Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/Misc/mixexp_graddesc.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%%%%%%%%%% function [theta, eta] = mixture_of_experts(q, data, num_iter, theta, eta) % MIXTURE_OF_EXPERTS Fit a piecewise linear regression model using stochastic gradient descent. % [theta, eta] = mixture_of_experts(q, data, num_iter) % % Inputs: % q = number of pieces (experts) % data(l,:) = input example l % % Outputs: % theta(i,:) = regression vector for expert i % eta(i,:) = softmax (gating) params for expert i [num_cases dim] = size(data); data = [ones(num_cases,1) data]; % prepend with offset mu = 0.5; % step size sigma = 1; % variance of noise if nargin < 4 theta = 0.1*rand(q, dim); eta = 0.1*rand(q, dim); end for t=1:num_iter for iter=1:num_cases x = data(iter, 1:dim); ystar = data(iter, dim+1); % target % yhat(i) = E[y | Q=i, x] = prediction of i'th expert yhat = theta * x'; % gate_prior(i,:) = Pr(Q=i | x) gate_prior = exp(eta * x'); gate_prior = gate_prior / sum(gate_prior); % lik(i) = Pr(y | Q=i, x) lik = (1/(sqrt(2*pi)*sigma)) * exp(-(0.5/sigma^2) * ((ystar - yhat) .* (ystar - yhat))); % gate_posterior(i,:) = Pr(Q=i | x, y) gate_posterior = gate_prior .* lik; gate_posterior = gate_posterior / sum(gate_posterior); % Update eta = eta + mu*(gate_posterior - gate_prior)*x; theta = theta + mu*(gate_posterior .* (ystar - yhat))*x; end if mod(t,100)==0 fprintf(1, 'iter %d\n', t); end end fprintf(1, '\n');