Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/HME/hme_reg_plot.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function fh=hme_reg_plot(net, nodes_info, train_data, test_data) % % Use this function ONLY when the input dimension is 1 % and the problem is a regression one. % We assume that each row of 'train_data' & 'test_data' is an example. % % ---------------------------------------------------------------------------------------------------- % -> pierpaolo_b@hotmail.com or -> pampo@interfree.it % ---------------------------------------------------------------------------------------------------- fh=figure('Name','HME based regression', 'MenuBar', 'none', 'NumberTitle', 'off'); mn_x_train = round(min(train_data(:,1))); mx_x_train = round(max(train_data(:,1))); x_train = mn_x_train(1):0.01:mx_x_train(1); Z_train=fhme(net, nodes_info, x_train',size(x_train,2)); % forward propagation trougth the HME if nargin==4, subplot(2,1,1); mn_x_test = round(min(test_data(:,1))); mx_x_test = round(max(test_data(:,1))); x_test = mn_x_test(1):0.01:mx_x_test(1); Z_test=fhme(net, nodes_info, x_test',size(x_test,2)); % forward propagation trougth the HME end hold on; set(gca, 'Box', 'on'); plot(x_train', Z_train, 'r'); plot(train_data(:,1),train_data(:,2),'+k'); title('Training set and prediction'); hold off if nargin==4, subplot(2,1,2); hold on; set(gca, 'Box', 'on'); plot(x_train', Z_train, 'r'); if size(test_data,2)==2, plot(test_data(:,1),test_data(:,2),'+k'); end title('Test set and prediction'); hold off end