Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/Brutti/Belief_hme.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Sigmoid Belief Hierarchical Mixtures of Experts clear all clc X = 1; Q1 = 2; Q2 = 3; Y = 4; dag = zeros(4,4); dag(X,[Q1 Q2 Y]) = 1; dag(Q1, [Q2 Y]) = 1; dag(Q2,Y)=1; ns = [1 3 4 3]; dnodes = [2 3 4]; onodes=[1 2 3 4]; bnet = mk_bnet(dag,ns, dnodes); rand('state',0); randn('state',0); bnet.CPD{1} = root_CPD(bnet, 1); bnet.CPD{2} = softmax_CPD(bnet, 2, 'max_iter', 3); bnet.CPD{3} = softmax_CPD(bnet, 3, 'discrete', [2], 'max_iter', 3); bnet.CPD{4} = softmax_CPD(bnet, 4, 'discrete', [2 3], 'max_iter', 3); T=5; cases = cell(4, T); cases(1,:)=num2cell(rand(1,T)); %cases(2,:)=num2cell(round(rand(1,T)*2)+1); %cases(3,:)=num2cell(round(rand(1,T)*3)+1); cases(4,:)=num2cell(round(rand(1,T)*2)+1); engine = jtree_inf_engine(bnet, onodes); [engine, loglik] = enter_evidence(engine, cases); disp('learning-------------------------------------------') [bnet2, LL2] = learn_params_em(engine, cases, 4);