Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@softmax_CPD/update_ess.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) % UPDATE_ESS Update the Expected Sufficient Statistics of a softmax node % function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) % % fmarginal = overall posterior distribution of self and its parents % fmarginal(i1,i2...,ik,s)=prob(Pa1=i1,...,Pak=ik, self=s| X) % % => 1) prob(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) with prob(Pa1,...,Pak)=sum{s,fmarginal} % [self estimation -> CPD.self_vals] % 2) prob(Pa1,...,Pak) [WIRLS weights -> CPD.eso_weights] % % Hidden_bitv is ignored % Written by Pierpaolo Brutti if ~adjustable_CPD(CPD), return; end domain = fmarginal.domain; self = domain(end); ps = domain(1:end-1); cnodes = domain(CPD.cpndx); cps = myintersect(domain, cnodes); dps = mysetdiff(ps, cps); dn_use = dps; if isempty(evidence{self}) dn_use = [dn_use self]; end % if self is hidden we must consider its dimension dps_as_cps = domain(CPD.dps_as_cps.ndx); odom = domain(~isemptycell(evidence(domain))); ns = zeros(1, max(domain)); ns(domain) = CPD.sizes; % CPD.sizes = bnet.node_sizes([ps self]); ens = ns; % effective node sizes ens(odom) = 1; dpsize = prod(ns(dps)); % Extract the params compatible with the observations (if any) on the discrete parents (if any) dops = myintersect(dps, odom); dpvals = cat(1, evidence{dops}); subs = ind2subv(ens(dn_use), 1:prod(ens(dn_use))); dpmap = find_equiv_posns(dops, dn_use); if ~isempty(dpmap), subs(:,dpmap) = subs(:,dpmap)+repmat(dpvals(:)',[size(subs,1) 1])-1; end supportedQs = subv2ind(ns(dn_use), subs); subs=subs(1:prod(ens(dps)),1:length(dps)); Qarity = prod(ns(dn_use)); if isempty(dn_use), Qarity = 1; end fullm.T = zeros(Qarity, 1); fullm.T(supportedQs) = fmarginal.T(:); rs_dim = CPD.sizes; rs_dim(CPD.cpndx) = 1; % if ~isempty(evidence{self}), rs_dim(end)=1; end % reshaping the marginal fullm.T = reshape(fullm.T, rs_dim); % % --------------------------------------------------------------------------------UPDATE-- CPD.nsamples = CPD.nsamples + 1; % 1) observations vector -> CPD.parents_vals --------------------------------------------- cpvals = cat(1, evidence{cps}); if ~isempty(dps_as_cps), % ...get in the dp_as_cp parents... separator = CPD.dps_as_cps.separator; dp_as_cpmap = find_equiv_posns(dps_as_cps, dps); for i=1:dpsize, dp_as_cpvals=zeros(1,sum(ns(dps_as_cps))); possible_vals = ind2subv(ns(dps),i); ll=find(ismember(subs(:,dp_as_cpmap), possible_vals(dp_as_cpmap), 'rows')==1); if ~isempty(ll), where_one = separator + possible_vals(dp_as_cpmap); dp_as_cpvals(where_one)=1; end CPD.parent_vals(CPD.nsamples,:,i) = [dp_as_cpvals(:); cpvals(:)]'; end else CPD.parent_vals(CPD.nsamples,:) = cpvals(:)'; end % 2) weights vector -> CPD.eso_weights ---------------------------------------------------- if isempty(evidence{self}), % self is hidden pesi=reshape(sum(fullm.T, length(rs_dim)),[dpsize,1]); else pesi=reshape(fullm.T,[dpsize,1]); end assert(approxeq(sum(pesi),1)); % check % 3) estimate (if R is hidden) or recover (if R is obs) self'value------------------------- if isempty(evidence{self}) % P(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) r=reshape(mk_stochastic(fullm.T), [dpsize ns(self)]); % matrix size: prod{j,ns(Paj)} x ns(self) else r = zeros(dpsize,ns(self)); for i=1:dpsize, if pesi(i)~=0, r(i,evidence{self}) = 1; end; end end for i=1:dpsize, if pesi(i)~=0, assert(approxeq(sum(r(i,:)),1)); end; end % check % 4) save the previous values -------------------------------------------------------------- for i=1:dpsize CPD.eso_weights(CPD.nsamples,:,i)=pesi(i); CPD.self_vals(CPD.nsamples,:,i) = r(i,:); end