Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/SLAM/mk_linear_slam.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [A,B,C,Q,R,Qbig,Rbig,init_x,init_V,robot_block,landmark_block,... true_landmark_pos, true_robot_pos, true_data_assoc, ... obs_rel_pos, ctrl_signal] = mk_linear_slam(varargin) % We create data from a linear system for testing SLAM algorithms. % i.e. , new robot pos = old robot pos + ctrl_signal, which is just a displacement vector. % and observation = landmark_pos - robot_pos, which is just a displacement vector. % % The behavior is determined by the following optional arguments: % % 'nlandmarks' - num. landmarks % 'landmarks' - 'rnd' means random locations in the unit sqyare % 'square' means at [1 1], [4 1], [4 4] and [1 4] % 'T' - num steps to run % 'ctrl' - 'stationary' means the robot remains at [0 0], % 'leftright' means the robot receives a constant contol of [1 0], % 'square' means we navigate the robot around the square % 'data-assoc' - 'rnd' means we observe landmarks at random % 'nn' means we observe the nearest neighbor landmark % 'cycle' means we observe landmarks in order 1,2,.., 1, 2, ... args = varargin; % get mandatory params for i=1:2:length(args) switch args{i}, case 'nlandmarks', nlandmarks = args{i+1}; case 'T', T = args{i+1}; end end % set defaults true_landmark_pos = rand(2,nlandmarks); true_data_assoc = []; % get args for i=1:2:length(args) switch args{i}, case 'landmarks', switch args{i+1}, case 'rnd', true_landmark_pos = rand(2,nlandmarks); case 'square', true_landmark_pos = [1 1; 4 1; 4 4; 1 4]'; end case 'ctrl', switch args{i+1}, case 'stationary', ctrl_signal = repmat([0 0]', 1, T); case 'leftright', ctrl_signal = repmat([1 0]', 1, T); case 'square', ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ... repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)]; end case 'data-assoc', switch args{i+1}, case 'rnd', true_data_assoc = sample_discrete(normalise(ones(1,nlandmarks)),1,T); case 'cycle', true_data_assoc = wrap(1:T, nlandmarks); end end end if isempty(true_data_assoc) use_nn = 1; else use_nn = 0; end %%%%%%%%%%%%%%%%%%%%%%%% % generate data init_robot_pos = [0 0]'; true_robot_pos = zeros(2, T); true_rel_dist = zeros(2, T); for t=1:T if t>1 true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t); else true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t); end nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos')); if use_nn true_data_assoc(t) = nn; end true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t); end R = 1e-3*eye(2); % noise added to observation Q = 1e-3*eye(2); % noise added to robot motion % Create data set obs_noise_seq = sample_gaussian([0 0]', R, T)'; obs_rel_pos = true_rel_dist + obs_noise_seq; %obs_rel_pos = true_rel_dist; %%%%%%%%%%%%%%%%%% % Create params % X(t) = A X(t-1) + B U(t) + noise(Q) % [L1] = [1 ] * [L1] + [0] * Ut + [0 ] % [L2] [ 1 ] [L2] [0] [ 0 ] % [R ]t [ 1] [R ]t-1 [1] [ Q] % Y(t)|S(t)=s = C(s) X(t) + noise(R) % Yt|St=1 = [1 0 -1] * [L1] + R % [L2] % [R ] % Create indices into block structure bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space robot_block = block(nlandmarks+1, bs); for i=1:nlandmarks landmark_block(:,i) = block(i, bs)'; end Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot Ysz = 2; % observe relative location Usz = 2; % input is (dx, dy) % create block-diagonal trans matrix for each switch A = zeros(Xsz, Xsz); for i=1:nlandmarks bi = landmark_block(:,i); A(bi, bi) = eye(2); end bi = robot_block; A(bi, bi) = eye(2); A = repmat(A, [1 1 nlandmarks]); % same for all switch values % create block-diagonal system cov Qbig = zeros(Xsz, Xsz); bi = robot_block; Qbig(bi,bi) = Q; % only add noise to robot motion Qbig = repmat(Qbig, [1 1 nlandmarks]); % create input matrix B = zeros(Xsz, Usz); B(robot_block,:) = eye(2); % only add input to robot position B = repmat(B, [1 1 nlandmarks]); % create observation matrix for each value of the switch node % C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn. % This computes L(i) - R C = zeros(Ysz, Xsz, nlandmarks); for i=1:nlandmarks C(:, landmark_block(:,i), i) = eye(2); C(:, robot_block, i) = -eye(2); end % create observation cov for each value of the switch node Rbig = repmat(R, [1 1 nlandmarks]); % initial conditions init_x = zeros(Xsz, 1); init_v = zeros(Xsz, Xsz); bi = robot_block; init_x(bi) = init_robot_pos; %init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn init_V(bi, bi) = Q; % simualate uncertainty due to 1 motion step for i=1:nlandmarks bi = landmark_block(:,i); init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns %init_x(bi) = true_landmark_pos(:,i); %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns end