comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/SLAM/mk_linear_slam.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [A,B,C,Q,R,Qbig,Rbig,init_x,init_V,robot_block,landmark_block,...
2 true_landmark_pos, true_robot_pos, true_data_assoc, ...
3 obs_rel_pos, ctrl_signal] = mk_linear_slam(varargin)
4
5 % We create data from a linear system for testing SLAM algorithms.
6 % i.e. , new robot pos = old robot pos + ctrl_signal, which is just a displacement vector.
7 % and observation = landmark_pos - robot_pos, which is just a displacement vector.
8 %
9 % The behavior is determined by the following optional arguments:
10 %
11 % 'nlandmarks' - num. landmarks
12 % 'landmarks' - 'rnd' means random locations in the unit sqyare
13 % 'square' means at [1 1], [4 1], [4 4] and [1 4]
14 % 'T' - num steps to run
15 % 'ctrl' - 'stationary' means the robot remains at [0 0],
16 % 'leftright' means the robot receives a constant contol of [1 0],
17 % 'square' means we navigate the robot around the square
18 % 'data-assoc' - 'rnd' means we observe landmarks at random
19 % 'nn' means we observe the nearest neighbor landmark
20 % 'cycle' means we observe landmarks in order 1,2,.., 1, 2, ...
21
22 args = varargin;
23 % get mandatory params
24 for i=1:2:length(args)
25 switch args{i},
26 case 'nlandmarks', nlandmarks = args{i+1};
27 case 'T', T = args{i+1};
28 end
29 end
30
31 % set defaults
32 true_landmark_pos = rand(2,nlandmarks);
33 true_data_assoc = [];
34
35 % get args
36 for i=1:2:length(args)
37 switch args{i},
38 case 'landmarks',
39 switch args{i+1},
40 case 'rnd', true_landmark_pos = rand(2,nlandmarks);
41 case 'square', true_landmark_pos = [1 1; 4 1; 4 4; 1 4]';
42 end
43 case 'ctrl',
44 switch args{i+1},
45 case 'stationary', ctrl_signal = repmat([0 0]', 1, T);
46 case 'leftright', ctrl_signal = repmat([1 0]', 1, T);
47 case 'square', ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ...
48 repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)];
49 end
50 case 'data-assoc',
51 switch args{i+1},
52 case 'rnd', true_data_assoc = sample_discrete(normalise(ones(1,nlandmarks)),1,T);
53 case 'cycle', true_data_assoc = wrap(1:T, nlandmarks);
54 end
55 end
56 end
57 if isempty(true_data_assoc)
58 use_nn = 1;
59 else
60 use_nn = 0;
61 end
62
63 %%%%%%%%%%%%%%%%%%%%%%%%
64 % generate data
65
66 init_robot_pos = [0 0]';
67 true_robot_pos = zeros(2, T);
68 true_rel_dist = zeros(2, T);
69 for t=1:T
70 if t>1
71 true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t);
72 else
73 true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t);
74 end
75 nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos'));
76 if use_nn
77 true_data_assoc(t) = nn;
78 end
79 true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t);
80 end
81
82
83 R = 1e-3*eye(2); % noise added to observation
84 Q = 1e-3*eye(2); % noise added to robot motion
85
86 % Create data set
87 obs_noise_seq = sample_gaussian([0 0]', R, T)';
88 obs_rel_pos = true_rel_dist + obs_noise_seq;
89 %obs_rel_pos = true_rel_dist;
90
91 %%%%%%%%%%%%%%%%%%
92 % Create params
93
94
95 % X(t) = A X(t-1) + B U(t) + noise(Q)
96
97 % [L1] = [1 ] * [L1] + [0] * Ut + [0 ]
98 % [L2] [ 1 ] [L2] [0] [ 0 ]
99 % [R ]t [ 1] [R ]t-1 [1] [ Q]
100
101 % Y(t)|S(t)=s = C(s) X(t) + noise(R)
102 % Yt|St=1 = [1 0 -1] * [L1] + R
103 % [L2]
104 % [R ]
105
106 % Create indices into block structure
107 bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space
108 robot_block = block(nlandmarks+1, bs);
109 for i=1:nlandmarks
110 landmark_block(:,i) = block(i, bs)';
111 end
112 Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot
113 Ysz = 2; % observe relative location
114 Usz = 2; % input is (dx, dy)
115
116
117 % create block-diagonal trans matrix for each switch
118 A = zeros(Xsz, Xsz);
119 for i=1:nlandmarks
120 bi = landmark_block(:,i);
121 A(bi, bi) = eye(2);
122 end
123 bi = robot_block;
124 A(bi, bi) = eye(2);
125 A = repmat(A, [1 1 nlandmarks]); % same for all switch values
126
127 % create block-diagonal system cov
128
129
130 Qbig = zeros(Xsz, Xsz);
131 bi = robot_block;
132 Qbig(bi,bi) = Q; % only add noise to robot motion
133 Qbig = repmat(Qbig, [1 1 nlandmarks]);
134
135 % create input matrix
136 B = zeros(Xsz, Usz);
137 B(robot_block,:) = eye(2); % only add input to robot position
138 B = repmat(B, [1 1 nlandmarks]);
139
140 % create observation matrix for each value of the switch node
141 % C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn.
142 % This computes L(i) - R
143 C = zeros(Ysz, Xsz, nlandmarks);
144 for i=1:nlandmarks
145 C(:, landmark_block(:,i), i) = eye(2);
146 C(:, robot_block, i) = -eye(2);
147 end
148
149 % create observation cov for each value of the switch node
150 Rbig = repmat(R, [1 1 nlandmarks]);
151
152 % initial conditions
153 init_x = zeros(Xsz, 1);
154 init_v = zeros(Xsz, Xsz);
155 bi = robot_block;
156 init_x(bi) = init_robot_pos;
157 %init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn
158 init_V(bi, bi) = Q; % simualate uncertainty due to 1 motion step
159 for i=1:nlandmarks
160 bi = landmark_block(:,i);
161 init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns
162 %init_x(bi) = true_landmark_pos(:,i);
163 %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns
164 end