Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/cmp_inference_static.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [time, engine] = cmp_inference_static(bnet, engine, varargin) % CMP_INFERENCE Compare several inference engines on a BN % function [time, engine] = cmp_inference_static(bnet, engine, ...) % % engine{i} is the i'th inference engine. % time(e) = elapsed time for doing inference with engine e % % The list below gives optional arguments [default value in brackets]. % % exact - specifies which engines do exact inference [ 1:length(engine) ] % singletons_only - if 1, we only call marginal_nodes, else this and marginal_family [0] % maximize - 1 means we do max-propagation, 0 means sum-propagation [0] % check_ll - 1 means we check that the log-likelihoods are correct [1] % observed - list of the observed ndoes [ bnet.observed ] % check_converged - list of loopy engines that should be checked for convergence [ [] ] % If an engine has converged, it is added to the exact list. % set default params exact = 1:length(engine); singletons_only = 0; maximize = 0; check_ll = 1; observed = bnet.observed; check_converged = []; args = varargin; nargs = length(args); for i=1:2:nargs switch args{i}, case 'exact', exact = args{i+1}; case 'singletons_only', singletons_only = args{i+1}; case 'maximize', maximize = args{i+1}; case 'check_ll', check_ll = args{i+1}; case 'observed', observed = args{i+1}; case 'check_converged', check_converged = args{i+1}; otherwise, error(['unrecognized argument ' args{i}]) end end E = length(engine); ref = exact(1); % reference N = length(bnet.dag); ev = sample_bnet(bnet); evidence = cell(1,N); evidence(observed) = ev(observed); %celldisp(evidence(observed)) for i=1:E tic; if check_ll [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence, 'maximize', maximize); else engine{i} = enter_evidence(engine{i}, evidence, 'maximize', maximize); end time(i)=toc; end for i=check_converged(:)' niter = loopy_converged(engine{i}); if niter > 0 fprintf('loopy engine %d converged in %d iterations\n', i, niter); % exact = myunion(exact, i); else fprintf('loopy engine %d has not converged\n', i); end end cmp = exact(2:end); if check_ll for i=cmp(:)' assert(approxeq(ll(ref), ll(i))); end end hnodes = mysetdiff(1:N, observed); if ~singletons_only get_marginals(engine, hnodes, exact, 0); end get_marginals(engine, hnodes, exact, 1); %%%%%%%%%% function get_marginals(engine, hnodes, exact, singletons) bnet = bnet_from_engine(engine{1}); N = length(bnet.dag); cnodes_bitv = zeros(1,N); cnodes_bitv(bnet.cnodes) = 1; ref = exact(1); % reference cmp = exact(2:end); E = length(engine); for n=hnodes(:)' for e=1:E if singletons m{e} = marginal_nodes(engine{e}, n); else m{e} = marginal_family(engine{e}, n); end end for e=cmp(:)' if cnodes_bitv(n) assert(approxeq(m{ref}.mu, m{e}.mu)) assert(approxeq(m{ref}.Sigma, m{e}.Sigma)) else assert(approxeq(m{ref}.T, m{e}.T)) end assert(isequal(m{e}.domain, m{ref}.domain)); end end