wolffd@0
|
1 function [time, engine] = cmp_inference_static(bnet, engine, varargin)
|
wolffd@0
|
2 % CMP_INFERENCE Compare several inference engines on a BN
|
wolffd@0
|
3 % function [time, engine] = cmp_inference_static(bnet, engine, ...)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % engine{i} is the i'th inference engine.
|
wolffd@0
|
6 % time(e) = elapsed time for doing inference with engine e
|
wolffd@0
|
7 %
|
wolffd@0
|
8 % The list below gives optional arguments [default value in brackets].
|
wolffd@0
|
9 %
|
wolffd@0
|
10 % exact - specifies which engines do exact inference [ 1:length(engine) ]
|
wolffd@0
|
11 % singletons_only - if 1, we only call marginal_nodes, else this and marginal_family [0]
|
wolffd@0
|
12 % maximize - 1 means we do max-propagation, 0 means sum-propagation [0]
|
wolffd@0
|
13 % check_ll - 1 means we check that the log-likelihoods are correct [1]
|
wolffd@0
|
14 % observed - list of the observed ndoes [ bnet.observed ]
|
wolffd@0
|
15 % check_converged - list of loopy engines that should be checked for convergence [ [] ]
|
wolffd@0
|
16 % If an engine has converged, it is added to the exact list.
|
wolffd@0
|
17
|
wolffd@0
|
18
|
wolffd@0
|
19 % set default params
|
wolffd@0
|
20 exact = 1:length(engine);
|
wolffd@0
|
21 singletons_only = 0;
|
wolffd@0
|
22 maximize = 0;
|
wolffd@0
|
23 check_ll = 1;
|
wolffd@0
|
24 observed = bnet.observed;
|
wolffd@0
|
25 check_converged = [];
|
wolffd@0
|
26
|
wolffd@0
|
27 args = varargin;
|
wolffd@0
|
28 nargs = length(args);
|
wolffd@0
|
29 for i=1:2:nargs
|
wolffd@0
|
30 switch args{i},
|
wolffd@0
|
31 case 'exact', exact = args{i+1};
|
wolffd@0
|
32 case 'singletons_only', singletons_only = args{i+1};
|
wolffd@0
|
33 case 'maximize', maximize = args{i+1};
|
wolffd@0
|
34 case 'check_ll', check_ll = args{i+1};
|
wolffd@0
|
35 case 'observed', observed = args{i+1};
|
wolffd@0
|
36 case 'check_converged', check_converged = args{i+1};
|
wolffd@0
|
37 otherwise,
|
wolffd@0
|
38 error(['unrecognized argument ' args{i}])
|
wolffd@0
|
39 end
|
wolffd@0
|
40 end
|
wolffd@0
|
41
|
wolffd@0
|
42 E = length(engine);
|
wolffd@0
|
43 ref = exact(1); % reference
|
wolffd@0
|
44
|
wolffd@0
|
45 N = length(bnet.dag);
|
wolffd@0
|
46 ev = sample_bnet(bnet);
|
wolffd@0
|
47 evidence = cell(1,N);
|
wolffd@0
|
48 evidence(observed) = ev(observed);
|
wolffd@0
|
49 %celldisp(evidence(observed))
|
wolffd@0
|
50
|
wolffd@0
|
51 for i=1:E
|
wolffd@0
|
52 tic;
|
wolffd@0
|
53 if check_ll
|
wolffd@0
|
54 [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence, 'maximize', maximize);
|
wolffd@0
|
55 else
|
wolffd@0
|
56 engine{i} = enter_evidence(engine{i}, evidence, 'maximize', maximize);
|
wolffd@0
|
57 end
|
wolffd@0
|
58 time(i)=toc;
|
wolffd@0
|
59 end
|
wolffd@0
|
60
|
wolffd@0
|
61 for i=check_converged(:)'
|
wolffd@0
|
62 niter = loopy_converged(engine{i});
|
wolffd@0
|
63 if niter > 0
|
wolffd@0
|
64 fprintf('loopy engine %d converged in %d iterations\n', i, niter);
|
wolffd@0
|
65 % exact = myunion(exact, i);
|
wolffd@0
|
66 else
|
wolffd@0
|
67 fprintf('loopy engine %d has not converged\n', i);
|
wolffd@0
|
68 end
|
wolffd@0
|
69 end
|
wolffd@0
|
70
|
wolffd@0
|
71 cmp = exact(2:end);
|
wolffd@0
|
72 if check_ll
|
wolffd@0
|
73 for i=cmp(:)'
|
wolffd@0
|
74 assert(approxeq(ll(ref), ll(i)));
|
wolffd@0
|
75 end
|
wolffd@0
|
76 end
|
wolffd@0
|
77
|
wolffd@0
|
78 hnodes = mysetdiff(1:N, observed);
|
wolffd@0
|
79
|
wolffd@0
|
80 if ~singletons_only
|
wolffd@0
|
81 get_marginals(engine, hnodes, exact, 0);
|
wolffd@0
|
82 end
|
wolffd@0
|
83 get_marginals(engine, hnodes, exact, 1);
|
wolffd@0
|
84
|
wolffd@0
|
85 %%%%%%%%%%
|
wolffd@0
|
86
|
wolffd@0
|
87 function get_marginals(engine, hnodes, exact, singletons)
|
wolffd@0
|
88
|
wolffd@0
|
89 bnet = bnet_from_engine(engine{1});
|
wolffd@0
|
90 N = length(bnet.dag);
|
wolffd@0
|
91 cnodes_bitv = zeros(1,N);
|
wolffd@0
|
92 cnodes_bitv(bnet.cnodes) = 1;
|
wolffd@0
|
93 ref = exact(1); % reference
|
wolffd@0
|
94 cmp = exact(2:end);
|
wolffd@0
|
95 E = length(engine);
|
wolffd@0
|
96
|
wolffd@0
|
97 for n=hnodes(:)'
|
wolffd@0
|
98 for e=1:E
|
wolffd@0
|
99 if singletons
|
wolffd@0
|
100 m{e} = marginal_nodes(engine{e}, n);
|
wolffd@0
|
101 else
|
wolffd@0
|
102 m{e} = marginal_family(engine{e}, n);
|
wolffd@0
|
103 end
|
wolffd@0
|
104 end
|
wolffd@0
|
105 for e=cmp(:)'
|
wolffd@0
|
106 if cnodes_bitv(n)
|
wolffd@0
|
107 assert(approxeq(m{ref}.mu, m{e}.mu))
|
wolffd@0
|
108 assert(approxeq(m{ref}.Sigma, m{e}.Sigma))
|
wolffd@0
|
109 else
|
wolffd@0
|
110 assert(approxeq(m{ref}.T, m{e}.T))
|
wolffd@0
|
111 end
|
wolffd@0
|
112 assert(isequal(m{e}.domain, m{ref}.domain));
|
wolffd@0
|
113 end
|
wolffd@0
|
114 end
|