Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mhmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make an HMM with mixture of Gaussian observations % Q1 ---> Q2 % / | / | % M1 | M2 | % \ v \ v % Y1 Y2 % where Pr(m=j|q=i) is a multinomial and Pr(y|m,q) is a Gaussian %seed = 3; %rand('state', seed); %randn('state', seed); intra = zeros(3); intra(1,[2 3]) = 1; intra(2,3) = 1; inter = zeros(3); inter(1,1) = 1; n = 3; Q = 2; % num hidden states O = 2; % size of observed vector M = 2; % num mixture components per state ns = [Q M O]; dnodes = [1 2]; onodes = [3]; eclass1 = [1 2 3]; eclass2 = [4 2 3]; bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onodes); prior0 = normalise(rand(Q,1)); transmat0 = mk_stochastic(rand(Q,Q)); mixmat0 = mk_stochastic(rand(Q,M)); mu0 = rand(O,Q,M); Sigma0 = repmat(eye(O), [1 1 Q M]); bnet.CPD{1} = tabular_CPD(bnet, 1, prior0); bnet.CPD{2} = tabular_CPD(bnet, 2, mixmat0); %% we set the cov prior to 0 to give same results as HMM toolbox %bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0); % new version of HMM toolbox uses the same default prior on Gaussians as BNT bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0); bnet.CPD{4} = tabular_CPD(bnet, 4, transmat0); T = 5; % fixed length sequences engine = {}; engine{end+1} = hmm_inf_engine(bnet); engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); if 0 engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); %engine{end+1} = frontier_inf_engine(bnet); engine{end+1} = bk_inf_engine(bnet, 'clusters', 'exact'); engine{end+1} = jtree_dbn_inf_engine(bnet); end inf_time = cmp_inference_dbn(bnet, engine, T); ncases = 2; max_iter = 2; [learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); % Compare to HMM toolbox data = zeros(O, T, ncases); for i=1:ncases data(:,:,i) = reshape(cell2num(cases{i}(onodes,:)), [O T]); end tic; [LL2, prior2, transmat2, mu2, Sigma2, mixmat2] = ... mhmm_em(data, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', max_iter); t=toc; disp(['HMM toolbox took ' num2str(t) ' seconds ']) for e = 1:length(engine) assert(approxeq(prior2, CPD{e,1}.CPT)) assert(approxeq(mixmat2, CPD{e,2}.CPT)) assert(approxeq(mu2, CPD{e,3}.mean)) assert(approxeq(Sigma2, CPD{e,3}.cov)) assert(approxeq(transmat2, CPD{e,4}.CPT)) assert(approxeq(LL2, LL{e})) end