Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mhmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mhmm1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,85 @@ +% Make an HMM with mixture of Gaussian observations +% Q1 ---> Q2 +% / | / | +% M1 | M2 | +% \ v \ v +% Y1 Y2 +% where Pr(m=j|q=i) is a multinomial and Pr(y|m,q) is a Gaussian + +%seed = 3; +%rand('state', seed); +%randn('state', seed); + +intra = zeros(3); +intra(1,[2 3]) = 1; +intra(2,3) = 1; +inter = zeros(3); +inter(1,1) = 1; +n = 3; + +Q = 2; % num hidden states +O = 2; % size of observed vector +M = 2; % num mixture components per state + +ns = [Q M O]; +dnodes = [1 2]; +onodes = [3]; +eclass1 = [1 2 3]; +eclass2 = [4 2 3]; +bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... + 'observed', onodes); + +prior0 = normalise(rand(Q,1)); +transmat0 = mk_stochastic(rand(Q,Q)); +mixmat0 = mk_stochastic(rand(Q,M)); +mu0 = rand(O,Q,M); +Sigma0 = repmat(eye(O), [1 1 Q M]); +bnet.CPD{1} = tabular_CPD(bnet, 1, prior0); +bnet.CPD{2} = tabular_CPD(bnet, 2, mixmat0); +%% we set the cov prior to 0 to give same results as HMM toolbox +%bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0); +% new version of HMM toolbox uses the same default prior on Gaussians as BNT +bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0); +bnet.CPD{4} = tabular_CPD(bnet, 4, transmat0); + + + +T = 5; % fixed length sequences + +engine = {}; +engine{end+1} = hmm_inf_engine(bnet); +engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); +engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); +if 0 +engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); +%engine{end+1} = frontier_inf_engine(bnet); +engine{end+1} = bk_inf_engine(bnet, 'clusters', 'exact'); +engine{end+1} = jtree_dbn_inf_engine(bnet); +end + +inf_time = cmp_inference_dbn(bnet, engine, T); + +ncases = 2; +max_iter = 2; +[learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); + +% Compare to HMM toolbox + +data = zeros(O, T, ncases); +for i=1:ncases + data(:,:,i) = reshape(cell2num(cases{i}(onodes,:)), [O T]); +end +tic; +[LL2, prior2, transmat2, mu2, Sigma2, mixmat2] = ... + mhmm_em(data, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', max_iter); +t=toc; +disp(['HMM toolbox took ' num2str(t) ' seconds ']) + +for e = 1:length(engine) + assert(approxeq(prior2, CPD{e,1}.CPT)) + assert(approxeq(mixmat2, CPD{e,2}.CPT)) + assert(approxeq(mu2, CPD{e,3}.mean)) + assert(approxeq(Sigma2, CPD{e,3}.cov)) + assert(approxeq(transmat2, CPD{e,4}.CPT)) + assert(approxeq(LL2, LL{e})) +end