Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Old/mk_hhmm3_args.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function bnet = mk_hhmm3(varargin) % MK_HHMM3 Make a 3 level Hierarchical HMM % bnet = mk_hhmm3(...) % % 3-layer hierarchical HMM where level 1 only connects to level 2, not 3 or obs. % This enforces sub-models (which differ only in their Q1 index) to be shared. % Also, we enforce the fact that each model always starts in its initial state % and only finishes in its final state. However, the prob. of finishing (as opposed to % self-transitioning to the final state) can be learned. % The fact that we always finish from the same state means we do not need to condition % F(i) on Q(i-1), since finishing prob is indep of calling context. % % The DBN is the same as Fig 10 in my tech report. % % Q1 ----------> Q1 % | / | % | / | % | F2 ------- | % | ^ \ | % | /| \ | % v | v v % Q2-| --------> Q2 % /| | ^ % / | | /| % | | F3 ---------/ | % | | ^ \ | % | v / v % | Q3 -----------> Q3 % | | % \ | % v v % O % % Q1 (slice 1) is clamped to be uniform. % Q2 (slice 1) is clamped to always start in state 1. % Q3 (slice 1) is clamped to always start in state 1. % F3 by default will only finish if Q3 is in its last state (F3 is a tabular_CPD) % F2 by default gets the default hhmmF_CPD params. % Q1:Q3 (slice 2) by default gets the default hhmmQ_CPD params. % O by default gets the default tabular/Gaussian params. % % Optional arguments in name/value format [default] % % Qsizes - sizes at each level [ none ] % Osize - size of O node [ none ] % discrete_obs - 1 means O is tabular_CPD, 0 means O is gaussian_CPD [0] % Oargs - cell array of args to pass to the O CPD [ {} ] % Q1args - args to be passed to constructor for Q1 (slice 2) [ {} ] % Q2args - args to be passed to constructor for Q2 (slice 2) [ {} ] % Q3args - args to be passed to constructor for Q3 (slice 2) [ {} ] % F2args - args to be passed to constructor for F2 [ {} ] % F3args - args to be passed to constructor for F3 [ {'CPT', finish in last Q3 state} ] % ss = 6; D = 3; Q1 = 1; Q2 = 2; Q3 = 3; F3 = 4; F2 = 5; obs = 6; Qnodes = [Q1 Q2 Q3]; Fnodes = [F2 F3]; names = {'Q1', 'Q2', 'Q3', 'F3', 'F2', 'obs'}; intra = zeros(ss); intra(Q1, Q2) = 1; intra(Q2, [F2 Q3 obs]) = 1; intra(Q3, [F3 obs]) = 1; intra(F3, F2) = 1; inter = zeros(ss); inter(Q1,Q1) = 1; inter(Q2,Q2) = 1; inter(Q3,Q3) = 1; inter(F2,[Q1 Q2]) = 1; inter(F3,[Q2 Q3]) = 1; % get sizes of nodes args = varargin; nargs = length(args); Qsizes = []; Osize = 0; for i=1:2:nargs switch args{i}, case 'Qsizes', Qsizes = args{i+1}; case 'Osize', Osize = args{i+1}; end end if isempty(Qsizes), error('must specify Qsizes'); end if Osize==0, error('must specify Osize'); end % set default params discrete_obs = 0; Oargs = {}; Q1args = {}; Q2args = {}; Q3args = {}; F2args = {}; % P(Q3, F3) CPT = zeros(Qsizes(3), 2); % Each model can only terminate in its final state. % 0 params will remain 0 during EM, thus enforcing this constraint. CPT(:, 1) = 1.0; % all states turn F off ... p = 0.5; CPT(Qsizes(3), 2) = p; % except the last one CPT(Qsizes(3), 1) = 1-p; F3args = {'CPT', CPT}; for i=1:2:nargs switch args{i}, case 'discrete_obs', discrete_obs = args{i+1}; case 'Oargs', Oargs = args{i+1}; case 'Q1args', Q1args = args{i+1}; case 'Q2args', Q2args = args{i+1}; case 'Q3args', Q3args = args{i+1}; case 'F2args', F2args = args{i+1}; case 'F3args', F3args = args{i+1}; end end ns = zeros(1,ss); ns(Qnodes) = Qsizes; ns(obs) = Osize; ns(Fnodes) = 2; dnodes = [Qnodes Fnodes]; if discrete_obs dnodes = [dnodes obs]; end onodes = [obs]; bnet = mk_dbn(intra, inter, ns, 'observed', onodes, 'discrete', dnodes, 'names', names); eclass = bnet.equiv_class; % SLICE 1 % We clamp untied nodes in the first slice, since their params can't be estimated % from just one sequence % uniform prior on initial model CPT = normalise(ones(1,ns(Q1))); bnet.CPD{eclass(Q1,1)} = tabular_CPD(bnet, Q1, 'CPT', CPT, 'adjustable', 0); % each model always starts in state 1 CPT = zeros(ns(Q1), ns(Q2)); CPT(:, 1) = 1.0; bnet.CPD{eclass(Q2,1)} = tabular_CPD(bnet, Q2, 'CPT', CPT, 'adjustable', 0); % each model always starts in state 1 CPT = zeros(ns(Q2), ns(Q3)); CPT(:, 1) = 1.0; bnet.CPD{eclass(Q3,1)} = tabular_CPD(bnet, Q3, 'CPT', CPT, 'adjustable', 0); bnet.CPD{eclass(F2,1)} = hhmmF_CPD(bnet, F2, Qnodes, 2, D, F2args{:}); bnet.CPD{eclass(F3,1)} = tabular_CPD(bnet, F3, F3args{:}); if discrete_obs bnet.CPD{eclass(obs,1)} = tabular_CPD(bnet, obs, Oargs{:}); else bnet.CPD{eclass(obs,1)} = gaussian_CPD(bnet, obs, Oargs{:}); end % SLICE 2 bnet.CPD{eclass(Q1,2)} = hhmmQ_CPD(bnet, Q1+ss, Qnodes, 1, D, Q1args{:}); bnet.CPD{eclass(Q2,2)} = hhmmQ_CPD(bnet, Q2+ss, Qnodes, 2, D, Q2args{:}); bnet.CPD{eclass(Q3,2)} = hhmmQ_CPD(bnet, Q3+ss, Qnodes, 3, D, Q3args{:});