Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Old/mk_hhmm3_args.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function bnet = mk_hhmm3(varargin) | |
2 % MK_HHMM3 Make a 3 level Hierarchical HMM | |
3 % bnet = mk_hhmm3(...) | |
4 % | |
5 % 3-layer hierarchical HMM where level 1 only connects to level 2, not 3 or obs. | |
6 % This enforces sub-models (which differ only in their Q1 index) to be shared. | |
7 % Also, we enforce the fact that each model always starts in its initial state | |
8 % and only finishes in its final state. However, the prob. of finishing (as opposed to | |
9 % self-transitioning to the final state) can be learned. | |
10 % The fact that we always finish from the same state means we do not need to condition | |
11 % F(i) on Q(i-1), since finishing prob is indep of calling context. | |
12 % | |
13 % The DBN is the same as Fig 10 in my tech report. | |
14 % | |
15 % Q1 ----------> Q1 | |
16 % | / | | |
17 % | / | | |
18 % | F2 ------- | | |
19 % | ^ \ | | |
20 % | /| \ | | |
21 % v | v v | |
22 % Q2-| --------> Q2 | |
23 % /| | ^ | |
24 % / | | /| | |
25 % | | F3 ---------/ | | |
26 % | | ^ \ | | |
27 % | v / v | |
28 % | Q3 -----------> Q3 | |
29 % | | | |
30 % \ | | |
31 % v v | |
32 % O | |
33 % | |
34 % Q1 (slice 1) is clamped to be uniform. | |
35 % Q2 (slice 1) is clamped to always start in state 1. | |
36 % Q3 (slice 1) is clamped to always start in state 1. | |
37 % F3 by default will only finish if Q3 is in its last state (F3 is a tabular_CPD) | |
38 % F2 by default gets the default hhmmF_CPD params. | |
39 % Q1:Q3 (slice 2) by default gets the default hhmmQ_CPD params. | |
40 % O by default gets the default tabular/Gaussian params. | |
41 % | |
42 % Optional arguments in name/value format [default] | |
43 % | |
44 % Qsizes - sizes at each level [ none ] | |
45 % Osize - size of O node [ none ] | |
46 % discrete_obs - 1 means O is tabular_CPD, 0 means O is gaussian_CPD [0] | |
47 % Oargs - cell array of args to pass to the O CPD [ {} ] | |
48 % Q1args - args to be passed to constructor for Q1 (slice 2) [ {} ] | |
49 % Q2args - args to be passed to constructor for Q2 (slice 2) [ {} ] | |
50 % Q3args - args to be passed to constructor for Q3 (slice 2) [ {} ] | |
51 % F2args - args to be passed to constructor for F2 [ {} ] | |
52 % F3args - args to be passed to constructor for F3 [ {'CPT', finish in last Q3 state} ] | |
53 % | |
54 | |
55 ss = 6; D = 3; | |
56 Q1 = 1; Q2 = 2; Q3 = 3; F3 = 4; F2 = 5; obs = 6; | |
57 Qnodes = [Q1 Q2 Q3]; Fnodes = [F2 F3]; | |
58 names = {'Q1', 'Q2', 'Q3', 'F3', 'F2', 'obs'}; | |
59 | |
60 intra = zeros(ss); | |
61 intra(Q1, Q2) = 1; | |
62 intra(Q2, [F2 Q3 obs]) = 1; | |
63 intra(Q3, [F3 obs]) = 1; | |
64 intra(F3, F2) = 1; | |
65 | |
66 inter = zeros(ss); | |
67 inter(Q1,Q1) = 1; | |
68 inter(Q2,Q2) = 1; | |
69 inter(Q3,Q3) = 1; | |
70 inter(F2,[Q1 Q2]) = 1; | |
71 inter(F3,[Q2 Q3]) = 1; | |
72 | |
73 | |
74 % get sizes of nodes | |
75 args = varargin; | |
76 nargs = length(args); | |
77 Qsizes = []; | |
78 Osize = 0; | |
79 for i=1:2:nargs | |
80 switch args{i}, | |
81 case 'Qsizes', Qsizes = args{i+1}; | |
82 case 'Osize', Osize = args{i+1}; | |
83 end | |
84 end | |
85 if isempty(Qsizes), error('must specify Qsizes'); end | |
86 if Osize==0, error('must specify Osize'); end | |
87 | |
88 % set default params | |
89 discrete_obs = 0; | |
90 Oargs = {}; | |
91 Q1args = {}; | |
92 Q2args = {}; | |
93 Q3args = {}; | |
94 F2args = {}; | |
95 | |
96 % P(Q3, F3) | |
97 CPT = zeros(Qsizes(3), 2); | |
98 % Each model can only terminate in its final state. | |
99 % 0 params will remain 0 during EM, thus enforcing this constraint. | |
100 CPT(:, 1) = 1.0; % all states turn F off ... | |
101 p = 0.5; | |
102 CPT(Qsizes(3), 2) = p; % except the last one | |
103 CPT(Qsizes(3), 1) = 1-p; | |
104 F3args = {'CPT', CPT}; | |
105 | |
106 for i=1:2:nargs | |
107 switch args{i}, | |
108 case 'discrete_obs', discrete_obs = args{i+1}; | |
109 case 'Oargs', Oargs = args{i+1}; | |
110 case 'Q1args', Q1args = args{i+1}; | |
111 case 'Q2args', Q2args = args{i+1}; | |
112 case 'Q3args', Q3args = args{i+1}; | |
113 case 'F2args', F2args = args{i+1}; | |
114 case 'F3args', F3args = args{i+1}; | |
115 end | |
116 end | |
117 | |
118 ns = zeros(1,ss); | |
119 ns(Qnodes) = Qsizes; | |
120 ns(obs) = Osize; | |
121 ns(Fnodes) = 2; | |
122 | |
123 dnodes = [Qnodes Fnodes]; | |
124 if discrete_obs | |
125 dnodes = [dnodes obs]; | |
126 end | |
127 onodes = [obs]; | |
128 | |
129 bnet = mk_dbn(intra, inter, ns, 'observed', onodes, 'discrete', dnodes, 'names', names); | |
130 eclass = bnet.equiv_class; | |
131 | |
132 % SLICE 1 | |
133 | |
134 % We clamp untied nodes in the first slice, since their params can't be estimated | |
135 % from just one sequence | |
136 | |
137 % uniform prior on initial model | |
138 CPT = normalise(ones(1,ns(Q1))); | |
139 bnet.CPD{eclass(Q1,1)} = tabular_CPD(bnet, Q1, 'CPT', CPT, 'adjustable', 0); | |
140 | |
141 % each model always starts in state 1 | |
142 CPT = zeros(ns(Q1), ns(Q2)); | |
143 CPT(:, 1) = 1.0; | |
144 bnet.CPD{eclass(Q2,1)} = tabular_CPD(bnet, Q2, 'CPT', CPT, 'adjustable', 0); | |
145 | |
146 % each model always starts in state 1 | |
147 CPT = zeros(ns(Q2), ns(Q3)); | |
148 CPT(:, 1) = 1.0; | |
149 bnet.CPD{eclass(Q3,1)} = tabular_CPD(bnet, Q3, 'CPT', CPT, 'adjustable', 0); | |
150 | |
151 bnet.CPD{eclass(F2,1)} = hhmmF_CPD(bnet, F2, Qnodes, 2, D, F2args{:}); | |
152 | |
153 bnet.CPD{eclass(F3,1)} = tabular_CPD(bnet, F3, F3args{:}); | |
154 | |
155 if discrete_obs | |
156 bnet.CPD{eclass(obs,1)} = tabular_CPD(bnet, obs, Oargs{:}); | |
157 else | |
158 bnet.CPD{eclass(obs,1)} = gaussian_CPD(bnet, obs, Oargs{:}); | |
159 end | |
160 | |
161 % SLICE 2 | |
162 | |
163 bnet.CPD{eclass(Q1,2)} = hhmmQ_CPD(bnet, Q1+ss, Qnodes, 1, D, Q1args{:}); | |
164 bnet.CPD{eclass(Q2,2)} = hhmmQ_CPD(bnet, Q2+ss, Qnodes, 2, D, Q2args{:}); | |
165 bnet.CPD{eclass(Q3,2)} = hhmmQ_CPD(bnet, Q3+ss, Qnodes, 3, D, Q3args{:}); |