Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/limids/oil1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/limids/oil1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,91 @@ +% oil wildcatter influence diagram in Cowell et al p172 + +% T = test for oil? +% UT = utility (negative cost) of testing +% O = amount of oil = Dry, Wet or Soaking +% R = results of test = NoStrucure, OpenStructure, ClosedStructure or NoResult +% D = drill? +% UD = utility of drilling + +% Decision sequence = T R D O + +T = 1; UT = 2; O = 3; R = 4; D = 5; UD = 6; +N = 6; +dag = zeros(N); +dag(T, [UT R D]) = 1; +dag(O, [R UD]) = 1; +dag(R, D) = 1; +dag(D, UD) = 1; + +ns = zeros(1,N); +ns(O) = 3; ns(R) = 4; ns(T) = 2; ns(D) = 2; ns(UT) = 1; ns(UD) = 1; + +limid = mk_limid(dag, ns, 'chance', [O R], 'decision', [T D], 'utility', [UT UD]); + +limid.CPD{O} = tabular_CPD(limid, O, [0.5 0.3 0.2]); +tbl = [0.6 0 0.3 0 0.1 0 0.3 0 0.4 0 0.4 0 0.1 0 0.3 0 0.5 0 0 1 0 1 0 1]; +limid.CPD{R} = tabular_CPD(limid, R, tbl); + +limid.CPD{UT} = tabular_utility_node(limid, UT, [-10 0]); +limid.CPD{UD} = tabular_utility_node(limid, UD, [-70 50 200 0 0 0]); + +if 1 + % start with uniform policies + limid.CPD{T} = tabular_decision_node(limid, T); + limid.CPD{D} = tabular_decision_node(limid, D); +else + % hard code optimal policies + limid.CPD{T} = tabular_decision_node(limid, T, [1.0 0.0]); + a = 0.5; b = 1-a; % arbitrary value + tbl = myreshape([0 a 1 a 1 a a a 1 b 0 b 0 b b b], ns([T R D])); + limid.CPD{D} = tabular_decision_node(limid, D, tbl); +end + +%fname = '/home/cs/murphyk/matlab/Misc/loopybel.txt'; + +engines = {}; +engines{end+1} = global_joint_inf_engine(limid); +engines{end+1} = jtree_limid_inf_engine(limid); +%engines{end+1} = belprop_inf_engine(limid, 'max_iter', 3*N, 'filename', fname); + +exact = [1 2]; +%approx = 3; +approx = []; + +E = length(engines); +strategy = cell(1, E); +MEU = zeros(1, E); +for e=1:E + [strategy{e}, MEU(e)] = solve_limid(engines{e}); + MEU +end +MEU + +for e=exact(:)' + assert(approxeq(MEU(e), 22.5)) + % U(T=yes) U(T=no) + % 1 0 + assert(argmax(strategy{e}{T}) == 1); % test = yes + t = 1; % test = yes + % strategy{D} T R U(D=yes=1) U(D=no=2) + % 1=yes 1=noS 0 1 Don't drill + % 2=no 1=noS 1 0 + % 1=yes 2=opS 1 0 + % 2=no 2=opS 1 0 + % 1=yes 3=clS 1 0 + % 2=no 3=clS 1 0 + % 1=yes 4=unk 1 0 + % 2=no 4=unk 1 0 + + for r=[2 3] % OpS, ClS + assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 1); % drill = yes + end + r = 1; % noS + assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 2); % drill = no +end + + +for e=approx(:)' + approxeq(strategy{exact(1)}{T}, strategy{e}{T}) + approxeq(strategy{exact(1)}{D}, strategy{e}{D}) +end