annotate toolboxes/FullBNT-1.0.7/bnt/examples/limids/oil1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % oil wildcatter influence diagram in Cowell et al p172
wolffd@0 2
wolffd@0 3 % T = test for oil?
wolffd@0 4 % UT = utility (negative cost) of testing
wolffd@0 5 % O = amount of oil = Dry, Wet or Soaking
wolffd@0 6 % R = results of test = NoStrucure, OpenStructure, ClosedStructure or NoResult
wolffd@0 7 % D = drill?
wolffd@0 8 % UD = utility of drilling
wolffd@0 9
wolffd@0 10 % Decision sequence = T R D O
wolffd@0 11
wolffd@0 12 T = 1; UT = 2; O = 3; R = 4; D = 5; UD = 6;
wolffd@0 13 N = 6;
wolffd@0 14 dag = zeros(N);
wolffd@0 15 dag(T, [UT R D]) = 1;
wolffd@0 16 dag(O, [R UD]) = 1;
wolffd@0 17 dag(R, D) = 1;
wolffd@0 18 dag(D, UD) = 1;
wolffd@0 19
wolffd@0 20 ns = zeros(1,N);
wolffd@0 21 ns(O) = 3; ns(R) = 4; ns(T) = 2; ns(D) = 2; ns(UT) = 1; ns(UD) = 1;
wolffd@0 22
wolffd@0 23 limid = mk_limid(dag, ns, 'chance', [O R], 'decision', [T D], 'utility', [UT UD]);
wolffd@0 24
wolffd@0 25 limid.CPD{O} = tabular_CPD(limid, O, [0.5 0.3 0.2]);
wolffd@0 26 tbl = [0.6 0 0.3 0 0.1 0 0.3 0 0.4 0 0.4 0 0.1 0 0.3 0 0.5 0 0 1 0 1 0 1];
wolffd@0 27 limid.CPD{R} = tabular_CPD(limid, R, tbl);
wolffd@0 28
wolffd@0 29 limid.CPD{UT} = tabular_utility_node(limid, UT, [-10 0]);
wolffd@0 30 limid.CPD{UD} = tabular_utility_node(limid, UD, [-70 50 200 0 0 0]);
wolffd@0 31
wolffd@0 32 if 1
wolffd@0 33 % start with uniform policies
wolffd@0 34 limid.CPD{T} = tabular_decision_node(limid, T);
wolffd@0 35 limid.CPD{D} = tabular_decision_node(limid, D);
wolffd@0 36 else
wolffd@0 37 % hard code optimal policies
wolffd@0 38 limid.CPD{T} = tabular_decision_node(limid, T, [1.0 0.0]);
wolffd@0 39 a = 0.5; b = 1-a; % arbitrary value
wolffd@0 40 tbl = myreshape([0 a 1 a 1 a a a 1 b 0 b 0 b b b], ns([T R D]));
wolffd@0 41 limid.CPD{D} = tabular_decision_node(limid, D, tbl);
wolffd@0 42 end
wolffd@0 43
wolffd@0 44 %fname = '/home/cs/murphyk/matlab/Misc/loopybel.txt';
wolffd@0 45
wolffd@0 46 engines = {};
wolffd@0 47 engines{end+1} = global_joint_inf_engine(limid);
wolffd@0 48 engines{end+1} = jtree_limid_inf_engine(limid);
wolffd@0 49 %engines{end+1} = belprop_inf_engine(limid, 'max_iter', 3*N, 'filename', fname);
wolffd@0 50
wolffd@0 51 exact = [1 2];
wolffd@0 52 %approx = 3;
wolffd@0 53 approx = [];
wolffd@0 54
wolffd@0 55 E = length(engines);
wolffd@0 56 strategy = cell(1, E);
wolffd@0 57 MEU = zeros(1, E);
wolffd@0 58 for e=1:E
wolffd@0 59 [strategy{e}, MEU(e)] = solve_limid(engines{e});
wolffd@0 60 MEU
wolffd@0 61 end
wolffd@0 62 MEU
wolffd@0 63
wolffd@0 64 for e=exact(:)'
wolffd@0 65 assert(approxeq(MEU(e), 22.5))
wolffd@0 66 % U(T=yes) U(T=no)
wolffd@0 67 % 1 0
wolffd@0 68 assert(argmax(strategy{e}{T}) == 1); % test = yes
wolffd@0 69 t = 1; % test = yes
wolffd@0 70 % strategy{D} T R U(D=yes=1) U(D=no=2)
wolffd@0 71 % 1=yes 1=noS 0 1 Don't drill
wolffd@0 72 % 2=no 1=noS 1 0
wolffd@0 73 % 1=yes 2=opS 1 0
wolffd@0 74 % 2=no 2=opS 1 0
wolffd@0 75 % 1=yes 3=clS 1 0
wolffd@0 76 % 2=no 3=clS 1 0
wolffd@0 77 % 1=yes 4=unk 1 0
wolffd@0 78 % 2=no 4=unk 1 0
wolffd@0 79
wolffd@0 80 for r=[2 3] % OpS, ClS
wolffd@0 81 assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 1); % drill = yes
wolffd@0 82 end
wolffd@0 83 r = 1; % noS
wolffd@0 84 assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 2); % drill = no
wolffd@0 85 end
wolffd@0 86
wolffd@0 87
wolffd@0 88 for e=approx(:)'
wolffd@0 89 approxeq(strategy{exact(1)}{T}, strategy{e}{T})
wolffd@0 90 approxeq(strategy{exact(1)}{D}, strategy{e}{D})
wolffd@0 91 end