Mercurial > hg > camir-aes2014
diff toolboxes/MIRtoolbox1.3.2/somtoolbox/som_kmeanscolor2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/MIRtoolbox1.3.2/somtoolbox/som_kmeanscolor2.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,193 @@ +function [color,centroids]=som_kmeanscolor2(mode,sM,C,initRGB,contrast,R) + +% SOM_KMEANSCOLOR2 Color codes a SOM according to averaged or best K-means clustering +% +% color = som_kmeanscolor2('average',sM, C, [initRGB], [contrast],[R]) +% +% color=som_kmeanscolor2('average',sM,[2 4 8 16],som_colorcode(sM,'rgb1'),'enhanced'); +% [color,centroid]=som_kmeanscolor2('best',sM,15,[],'flat',R); +% +% Input and output arguments ([]'s are optional): +% +% mode (string) 'average' or 'best', defalut: 'average' +% sM (struct) a map struct +% C (vector) number of clusters +% [initRGB] (string, matrix) a color code string accepted by SOM_COLORCODE +% or an Mx3 matrix of RGB triples, where M is the number +% of map units. Default: SOM_COLORCODEs default +% [contrast] (string) 'flat', 'enhanced' color contrast mode, default: +% 'enhanced'. +% [R] (scalar) number of K-means trials, default: 30. +% color (matrix) Mx3xC of RGB triples +% centroid (array of matrices) centroid{i} includes codebook for the best +% k-means for C(i) clusters, i.e. the cluster centroids corresponding to +% the color code color(:,:,i). +% +% The function gives a set of color codes for the SOM according to K-means +% clustering. It has two operation modes: +% +% 'average': The idea of coloring is that the color of the units belonging to the same +% cluster is the mean of the original RGB values (see SOM_COLORCODE) of the map units +% belonging to the cluster (see SOM_CLUSTERCOLOR). The K-means clustering is made, +% by default, 30 times and the resulting color codes are averaged for +% each specified number of clusters C(i), i=1,...,k. In a way, the resulting averaged color +% codes reflect the stability of the K-means clustering made on the map units. +% +% 'best': runs the k-means R times for C(i), i=1,...,n clusters as in previous mode, +% but instead of averaging all the R color codes, it picks the one that corresponds to the +% best k-means clustering for each C(i). The 'best' is the one with the lowest +% quantization error. The result may differ from run to run. +% +% EXAMPLE +% +% load iris; % or any other map struct sM +% color=som_kmeanscolor2('average',sM,[2:6]); +% som_show(sM,'umat','all','color',color); +% +% See also SOM_KMEANS, SOM_SHOW, SOM_COLORCODE, SOM_CLUSTERCOLOR, SOM_KMEANSCOLOR + +% Contributed to SOM Toolbox 2.0, 2001 February by Johan Himberg +% Copyright (c) by Johan Himberg +% http://www.cis.hut.fi/projects/somtoolbox/ + +%%% Check number of inputs + +error(nargchk(3, 6, nargin)); % check no. of input args + +%%% Check input args & set defaults + +if ~vis_valuetype(mode,{'string'}), + error('Mode must be a string.'); +end +switch lower(mode), +case{'average','best'} + ; +otherwise + error('Mode must be string ''average'' or ''best''.'); +end + +if isstruct(sM) & isfield(sM,'type') & strcmp(sM.type,'som_map'), + [tmp,lattice,msize]=vis_planeGetArgs(sM); + munits=prod(msize); + if length(msize)>2 + error('Does not work with 3D maps.') + end +else + error('Map struct required for the second input argument!'); +end + +if ~vis_valuetype(C,{'1xn','nx1'}), + error('Vector value expected for cluster number.'); +end + +% Round C and check +C=round(C(:)'); + +if any(C<2), + error('Cluster number must be 2 or more.'); +end + +% check initial color coding +if nargin<4 | isempty(initRGB) + initRGB=som_colorcode(sM); +end + +% check contrast checking +if nargin<5 | isempty(contrast), + contrast='enhanced'; +end + +if ~ischar(contrast), + error('String input expected for input arg. ''contrast''.'); +else + switch lower(contrast) + case {'flat','enhanced'} + ; + otherwise + error(['''flat'' or ''enhanced'' expected for '... + 'input argument ''contrast''.']); + end +end + +if ischar(initRGB), + try + initRGB=som_colorcode(sM,initRGB); + catch + error(['Color code ' initRGB ... + 'was not recognized by SOM_COLORCODE.']); + end +elseif vis_valuetype(initRGB,{'nx3rgb',[munits 3]},'all'), + ; +else + error(['The initial color code must be a string '... + 'or an Mx3 matrix of RGB triples.']); +end + +if nargin<6|isempty(R), + R=30; +end + +if ~vis_valuetype(R,{'1x1'}), + error('''R'' must be scalar.'); +end + +%%% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +disp('Wait...'); +index=0; hit_=zeros(munits,munits); + +switch mode, + %% Averaged k-means coloring +case 'average' + for k=C, + disp(['Running K-means for ' num2str(k) ' clusters...']); + color_=zeros(munits,3); + colord_=color_; + % Average R k-means colorings for C clusters + for j=1:R, + [dummy,c]=som_kmeans('batch',sM,k,100,0); % max 100 iterations, verbose off + color_=color_+som_clustercolor(sM,c,initRGB); + end + index=index+1; + color(:,:,index)=color_./R; + end + + %% coloring for 'best' k-means coloring +case 'best' + for k=C, + disp(['Running K-means for ' num2str(k) ' clusters...']); + c=[];err=Inf; div=[]; + %% look for the best k-means among R trials + for i=1:R, + [c_,div_,err_(i)]=som_kmeans('batch',sM,k,100,0); % max 100 iterations, verbose off + if err_(i)<err, + err=err_(i); c=c_; div=div_; + end + end + % record the 'best' k-means for C clusters + index=index+1; + color(:,:,index)=som_clustercolor(sM,div,initRGB); + centroid{index}=c; + end +end + +%%% Build output + +switch contrast +case 'flat' + ; +case 'enhanced' + warning off; + ncolor=maxnorm(color); + ncolor(~isfinite(ncolor))=color(~isfinite(ncolor)); + color=ncolor; + warning on; +end + + +%%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function X=maxnorm(x) +% normalize columns of x between [0,1] + +x=x-repmat(min(x),[size(x,1) 1 1]); +X=x./repmat(max(x),[size(x,1) 1 1]);