Mercurial > hg > camir-aes2014
diff toolboxes/MIRtoolbox1.3.2/MIRToolbox/@mirmfcc/mirmfcc.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/MIRtoolbox1.3.2/MIRToolbox/@mirmfcc/mirmfcc.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,156 @@ +function varargout = mirmfcc(orig,varargin) +% c = mirmfcc(a) finds the Mel frequency cepstral coefficients (ceps), +% a numerical description of the spectrum envelope. +% +% Requires the Auditory Toolbox. +% +% Optional arguments: +% c = mirmfcc(...,'Rank',N) computes the coefficients of rank(s) N +% (default: N = 1:13). +% If a is a frame decomposition, the temporal evolution of the MFCC, +% along the successive frames, is returned. In this case, a second +% option is available: +% mirmfcc(...,'Delta',d) performs d temporal differentiations of +% the coefficients, also called delta-MFCC (for d = 1) or +% delta-delta-MFCC (for d = 2). +% mirmfcc(...,'Delta') corresponds to mirmfcc(...,'Delta',1) +% Optional arguments related to the delta computation: +% mirmfcc(...,'Radius',r) specifies, for each frame, the number of +% successive and previous neighbouring frames taken into +% consideration for the least-square approximation. +% Usually 1 or 2. +% Default value: 2. + + nbbands.key = 'Bands'; + nbbands.type = 'Integer'; + nbbands.default = 40; + option.nbbands = nbbands; + + rank.key = 'Rank'; + rank.type = 'Integer'; + rank.default = 1:13; + option.rank = rank; + + delta.key = 'Delta'; + delta.type = 'Integer'; + delta.default = 0; + delta.keydefault = 1; + option.delta = delta; + + radius.key = 'Radius'; + radius.type = 'Integer'; + radius.default = 2; + option.radius = radius; + +specif.option = option; + +varargout = mirfunction(@mirmfcc,orig,varargin,nargout,specif,@init,@main); + + +function [x type] = init(x,option) +if isamir(x,'miraudio') || isamir(x,'mirspectrum') + x = mirspectrum(x,'Mel','log','Bands',option.nbbands); +end +type = 'mirmfcc'; + + +function c = main(orig,option,postoption) +if iscell(orig) + orig = orig{1}; +end +if isa(orig,'mirmfcc') + c = orig; + if option.rank + magn = get(c,'Data'); + rank = get(c,'Rank'); + for h = 1:length(magn) + for k = 1:length(magn{h}) + m = magn{h}{k}; + r = rank{h}{k}; + r1 = r(:,1,1); + range = find(ismember(r1,option.rank)); + magn{h}{k} = m(range,:,:); + rank{h}{k} = r(range,:,:); + end + end + c = set(c,'Data',magn,'Rank',rank); + end + c = modif(c,option); +else + c.delta = 0; + %disp('Computing Mel frequency cepstral coefficients...'); + e = get(orig,'Magnitude'); + + % The following is largely based on the source code from Auditory Toolbox + % (A part that I could not call directly from MIRtoolbox) + + % (Malcolm Slaney, August 1993, (c) 1998 Interval Research Corporation) + + try + MakeERBFilters(1,1,1); % Just to be sure that the Auditory Toolbox is installed + catch + error(['ERROR IN MIRFILTERBANK: Auditory Toolbox needs to be installed.']); + end + + dc = cell(1,length(e)); + rk = cell(1,length(e)); + for h = 1:length(e) + dc{h} = cell(1,length(e{h})); + rk{h} = cell(1,length(e{h})); + for i = 1:length(e{h}) + ei = e{h}{i}; + totalFilters = size(ei,3); %Number of mel bands. + + % Figure out Discrete Cosine Transform. We want a matrix + % dct(i,j) which is totalFilters x cepstralCoefficients in size. + % The i,j component is given by + % cos( i * (j+0.5)/totalFilters pi ) + % where we have assumed that i and j start at 0. + mfccDCTMatrix = 1/sqrt(totalFilters/2)*... + cos(option.rank' * ... + (2*(0:(totalFilters-1))+1) * ... + pi/2/totalFilters); + rank0 = find(option.rank == 0); + mfccDCTMatrix(rank0,:) = mfccDCTMatrix(rank0,:) * sqrt(2)/2; + ceps = zeros(size(mfccDCTMatrix,1),size(ei,2)); + for j = 1:size(ei,2) + ceps(:,j) = mfccDCTMatrix * permute(ei(1,j,:),[3 1 2]); + end + dc{h}{i} = ceps; + rk{h}{i} = repmat(option.rank(:),[1 size(ceps,2) size(ceps,3)]); + end + end + c = class(c,'mirmfcc',mirdata(orig)); + c = purgedata(c); + c = set(c,'Title','MFCC','Abs','coefficient ranks','Ord','magnitude',... + 'Data',dc,'Rank',rk); + c = modif(c,option); +end +c = {c orig}; + + +function c = modif(c,option) +d = get(c,'Data'); +fp = get(c,'FramePos'); +t = get(c,'Title'); +if option.delta + M = option.radius; + for k = 1:option.delta + for h = 1:length(d) + for i = 1:length(d{h}) + nc = size(d{h}{i},2)-2*M; + di = zeros(size(d{h}{i},1),nc); + for j = 1:M + di = di + j * (d{h}{i}(:,M+j+(1:nc)) ... + - d{h}{i}(:,M-j+(1:nc))); + end + di = di / 2 / sum((1:M).^2); % MULTIPLY BY 2 INSTEAD OF SQUARE FOR NORMALIZATION ? + d{h}{i} = di; + fp{h}{i} = fp{h}{i}(:,M+1:end-M); + end + end + t = ['Delta-',t]; + end +end +c = set(c,'Data',d,'FramePos',fp,'Delta',get(c,'Delta')+option.delta,... + 'Title',t); \ No newline at end of file