comparison toolboxes/MIRtoolbox1.3.2/MIRToolbox/@mirmfcc/mirmfcc.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function varargout = mirmfcc(orig,varargin)
2 % c = mirmfcc(a) finds the Mel frequency cepstral coefficients (ceps),
3 % a numerical description of the spectrum envelope.
4 %
5 % Requires the Auditory Toolbox.
6 %
7 % Optional arguments:
8 % c = mirmfcc(...,'Rank',N) computes the coefficients of rank(s) N
9 % (default: N = 1:13).
10 % If a is a frame decomposition, the temporal evolution of the MFCC,
11 % along the successive frames, is returned. In this case, a second
12 % option is available:
13 % mirmfcc(...,'Delta',d) performs d temporal differentiations of
14 % the coefficients, also called delta-MFCC (for d = 1) or
15 % delta-delta-MFCC (for d = 2).
16 % mirmfcc(...,'Delta') corresponds to mirmfcc(...,'Delta',1)
17 % Optional arguments related to the delta computation:
18 % mirmfcc(...,'Radius',r) specifies, for each frame, the number of
19 % successive and previous neighbouring frames taken into
20 % consideration for the least-square approximation.
21 % Usually 1 or 2.
22 % Default value: 2.
23
24 nbbands.key = 'Bands';
25 nbbands.type = 'Integer';
26 nbbands.default = 40;
27 option.nbbands = nbbands;
28
29 rank.key = 'Rank';
30 rank.type = 'Integer';
31 rank.default = 1:13;
32 option.rank = rank;
33
34 delta.key = 'Delta';
35 delta.type = 'Integer';
36 delta.default = 0;
37 delta.keydefault = 1;
38 option.delta = delta;
39
40 radius.key = 'Radius';
41 radius.type = 'Integer';
42 radius.default = 2;
43 option.radius = radius;
44
45 specif.option = option;
46
47 varargout = mirfunction(@mirmfcc,orig,varargin,nargout,specif,@init,@main);
48
49
50 function [x type] = init(x,option)
51 if isamir(x,'miraudio') || isamir(x,'mirspectrum')
52 x = mirspectrum(x,'Mel','log','Bands',option.nbbands);
53 end
54 type = 'mirmfcc';
55
56
57 function c = main(orig,option,postoption)
58 if iscell(orig)
59 orig = orig{1};
60 end
61 if isa(orig,'mirmfcc')
62 c = orig;
63 if option.rank
64 magn = get(c,'Data');
65 rank = get(c,'Rank');
66 for h = 1:length(magn)
67 for k = 1:length(magn{h})
68 m = magn{h}{k};
69 r = rank{h}{k};
70 r1 = r(:,1,1);
71 range = find(ismember(r1,option.rank));
72 magn{h}{k} = m(range,:,:);
73 rank{h}{k} = r(range,:,:);
74 end
75 end
76 c = set(c,'Data',magn,'Rank',rank);
77 end
78 c = modif(c,option);
79 else
80 c.delta = 0;
81 %disp('Computing Mel frequency cepstral coefficients...');
82 e = get(orig,'Magnitude');
83
84 % The following is largely based on the source code from Auditory Toolbox
85 % (A part that I could not call directly from MIRtoolbox)
86
87 % (Malcolm Slaney, August 1993, (c) 1998 Interval Research Corporation)
88
89 try
90 MakeERBFilters(1,1,1); % Just to be sure that the Auditory Toolbox is installed
91 catch
92 error(['ERROR IN MIRFILTERBANK: Auditory Toolbox needs to be installed.']);
93 end
94
95 dc = cell(1,length(e));
96 rk = cell(1,length(e));
97 for h = 1:length(e)
98 dc{h} = cell(1,length(e{h}));
99 rk{h} = cell(1,length(e{h}));
100 for i = 1:length(e{h})
101 ei = e{h}{i};
102 totalFilters = size(ei,3); %Number of mel bands.
103
104 % Figure out Discrete Cosine Transform. We want a matrix
105 % dct(i,j) which is totalFilters x cepstralCoefficients in size.
106 % The i,j component is given by
107 % cos( i * (j+0.5)/totalFilters pi )
108 % where we have assumed that i and j start at 0.
109 mfccDCTMatrix = 1/sqrt(totalFilters/2)*...
110 cos(option.rank' * ...
111 (2*(0:(totalFilters-1))+1) * ...
112 pi/2/totalFilters);
113 rank0 = find(option.rank == 0);
114 mfccDCTMatrix(rank0,:) = mfccDCTMatrix(rank0,:) * sqrt(2)/2;
115 ceps = zeros(size(mfccDCTMatrix,1),size(ei,2));
116 for j = 1:size(ei,2)
117 ceps(:,j) = mfccDCTMatrix * permute(ei(1,j,:),[3 1 2]);
118 end
119 dc{h}{i} = ceps;
120 rk{h}{i} = repmat(option.rank(:),[1 size(ceps,2) size(ceps,3)]);
121 end
122 end
123 c = class(c,'mirmfcc',mirdata(orig));
124 c = purgedata(c);
125 c = set(c,'Title','MFCC','Abs','coefficient ranks','Ord','magnitude',...
126 'Data',dc,'Rank',rk);
127 c = modif(c,option);
128 end
129 c = {c orig};
130
131
132 function c = modif(c,option)
133 d = get(c,'Data');
134 fp = get(c,'FramePos');
135 t = get(c,'Title');
136 if option.delta
137 M = option.radius;
138 for k = 1:option.delta
139 for h = 1:length(d)
140 for i = 1:length(d{h})
141 nc = size(d{h}{i},2)-2*M;
142 di = zeros(size(d{h}{i},1),nc);
143 for j = 1:M
144 di = di + j * (d{h}{i}(:,M+j+(1:nc)) ...
145 - d{h}{i}(:,M-j+(1:nc)));
146 end
147 di = di / 2 / sum((1:M).^2); % MULTIPLY BY 2 INSTEAD OF SQUARE FOR NORMALIZATION ?
148 d{h}{i} = di;
149 fp{h}{i} = fp{h}{i}(:,M+1:end-M);
150 end
151 end
152 t = ['Delta-',t];
153 end
154 end
155 c = set(c,'Data',d,'FramePos',fp,'Delta',get(c,'Delta')+option.delta,...
156 'Title',t);