Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/graddesc.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/graddesc.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,180 @@ +function [x, options, flog, pointlog] = graddesc(f, x, options, gradf, ... + varargin) +%GRADDESC Gradient descent optimization. +% +% Description +% [X, OPTIONS, FLOG, POINTLOG] = GRADDESC(F, X, OPTIONS, GRADF) uses +% batch gradient descent to find a local minimum of the function F(X) +% whose gradient is given by GRADF(X). A log of the function values +% after each cycle is (optionally) returned in ERRLOG, and a log of the +% points visited is (optionally) returned in POINTLOG. +% +% Note that X is a row vector and F returns a scalar value. The point +% at which F has a local minimum is returned as X. The function value +% at that point is returned in OPTIONS(8). +% +% GRADDESC(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional +% arguments to be passed to F() and GRADF(). +% +% The optional parameters have the following interpretations. +% +% OPTIONS(1) is set to 1 to display error values; also logs error +% values in the return argument ERRLOG, and the points visited in the +% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only +% warning messages are displayed. If OPTIONS(1) is -1, then nothing is +% displayed. +% +% OPTIONS(2) is the absolute precision required for the value of X at +% the solution. If the absolute difference between the values of X +% between two successive steps is less than OPTIONS(2), then this +% condition is satisfied. +% +% OPTIONS(3) is a measure of the precision required of the objective +% function at the solution. If the absolute difference between the +% objective function values between two successive steps is less than +% OPTIONS(3), then this condition is satisfied. Both this and the +% previous condition must be satisfied for termination. +% +% OPTIONS(7) determines the line minimisation method used. If it is +% set to 1 then a line minimiser is used (in the direction of the +% negative gradient). If it is 0 (the default), then each parameter +% update is a fixed multiple (the learning rate) of the negative +% gradient added to a fixed multiple (the momentum) of the previous +% parameter update. +% +% OPTIONS(9) should be set to 1 to check the user defined gradient +% function GRADF with GRADCHEK. This is carried out at the initial +% parameter vector X. +% +% OPTIONS(10) returns the total number of function evaluations +% (including those in any line searches). +% +% OPTIONS(11) returns the total number of gradient evaluations. +% +% OPTIONS(14) is the maximum number of iterations; default 100. +% +% OPTIONS(15) is the precision in parameter space of the line search; +% default FOPTIONS(2). +% +% OPTIONS(17) is the momentum; default 0.5. It should be scaled by the +% inverse of the number of data points. +% +% OPTIONS(18) is the learning rate; default 0.01. It should be scaled +% by the inverse of the number of data points. +% +% See also +% CONJGRAD, LINEMIN, OLGD, MINBRACK, QUASINEW, SCG +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Set up the options. +if length(options) < 18 + error('Options vector too short') +end + +if (options(14)) + niters = options(14); +else + niters = 100; +end + +line_min_flag = 0; % Flag for line minimisation option +if (round(options(7)) == 1) + % Use line minimisation + line_min_flag = 1; + % Set options for line minimiser + line_options = foptions; + if options(15) > 0 + line_options(2) = options(15); + end +else + % Learning rate: must be positive + if (options(18) > 0) + eta = options(18); + else + eta = 0.01; + end + % Momentum term: allow zero momentum + if (options(17) >= 0) + mu = options(17); + else + mu = 0.5; + end +end + +% Check function string +f = fcnchk(f, length(varargin)); +gradf = fcnchk(gradf, length(varargin)); + +% Display information if options(1) > 0 +display = options(1) > 0; + +% Work out if we need to compute f at each iteration. +% Needed if using line search or if display results or if termination +% criterion requires it. +fcneval = (options(7) | display | options(3)); + +% Check gradients +if (options(9) > 0) + feval('gradchek', x, f, gradf, varargin{:}); +end + +dxold = zeros(1, size(x, 2)); +xold = x; +fold = 0; % Must be initialised so that termination test can be performed +if fcneval + fnew = feval(f, x, varargin{:}); + options(10) = options(10) + 1; + fold = fnew; +end + +% Main optimization loop. +for j = 1:niters + xold = x; + grad = feval(gradf, x, varargin{:}); + options(11) = options(11) + 1; % Increment gradient evaluation counter + if (line_min_flag ~= 1) + dx = mu*dxold - eta*grad; + x = x + dx; + dxold = dx; + if fcneval + fold = fnew; + fnew = feval(f, x, varargin{:}); + options(10) = options(10) + 1; + end + else + sd = - grad./norm(grad); % New search direction. + fold = fnew; + % Do a line search: normalise search direction to have length 1 + [lmin, line_options] = feval('linemin', f, x, sd, fold, ... + line_options, varargin{:}); + options(10) = options(10) + line_options(10); + x = xold + lmin*sd; + fnew = line_options(8); + end + if nargout >= 3 + flog(j) = fnew; + if nargout >= 4 + pointlog(j, :) = x; + end + end + if display + fprintf(1, 'Cycle %5d Function %11.8f\n', j, fnew); + end + if (max(abs(x - xold)) < options(2) & abs(fnew - fold) < options(3)) + % Termination criteria are met + options(8) = fnew; + return; + end +end + +if fcneval + options(8) = fnew; +else + options(8) = feval(f, x, varargin{:}); + options(10) = options(10) + 1; +end +if (options(1) >= 0) + disp(maxitmess); +end