Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/graddesc.m @ 0:e9a9cd732c1e tip
first hg version after svn
| author | wolffd |
|---|---|
| date | Tue, 10 Feb 2015 15:05:51 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:e9a9cd732c1e |
|---|---|
| 1 function [x, options, flog, pointlog] = graddesc(f, x, options, gradf, ... | |
| 2 varargin) | |
| 3 %GRADDESC Gradient descent optimization. | |
| 4 % | |
| 5 % Description | |
| 6 % [X, OPTIONS, FLOG, POINTLOG] = GRADDESC(F, X, OPTIONS, GRADF) uses | |
| 7 % batch gradient descent to find a local minimum of the function F(X) | |
| 8 % whose gradient is given by GRADF(X). A log of the function values | |
| 9 % after each cycle is (optionally) returned in ERRLOG, and a log of the | |
| 10 % points visited is (optionally) returned in POINTLOG. | |
| 11 % | |
| 12 % Note that X is a row vector and F returns a scalar value. The point | |
| 13 % at which F has a local minimum is returned as X. The function value | |
| 14 % at that point is returned in OPTIONS(8). | |
| 15 % | |
| 16 % GRADDESC(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional | |
| 17 % arguments to be passed to F() and GRADF(). | |
| 18 % | |
| 19 % The optional parameters have the following interpretations. | |
| 20 % | |
| 21 % OPTIONS(1) is set to 1 to display error values; also logs error | |
| 22 % values in the return argument ERRLOG, and the points visited in the | |
| 23 % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only | |
| 24 % warning messages are displayed. If OPTIONS(1) is -1, then nothing is | |
| 25 % displayed. | |
| 26 % | |
| 27 % OPTIONS(2) is the absolute precision required for the value of X at | |
| 28 % the solution. If the absolute difference between the values of X | |
| 29 % between two successive steps is less than OPTIONS(2), then this | |
| 30 % condition is satisfied. | |
| 31 % | |
| 32 % OPTIONS(3) is a measure of the precision required of the objective | |
| 33 % function at the solution. If the absolute difference between the | |
| 34 % objective function values between two successive steps is less than | |
| 35 % OPTIONS(3), then this condition is satisfied. Both this and the | |
| 36 % previous condition must be satisfied for termination. | |
| 37 % | |
| 38 % OPTIONS(7) determines the line minimisation method used. If it is | |
| 39 % set to 1 then a line minimiser is used (in the direction of the | |
| 40 % negative gradient). If it is 0 (the default), then each parameter | |
| 41 % update is a fixed multiple (the learning rate) of the negative | |
| 42 % gradient added to a fixed multiple (the momentum) of the previous | |
| 43 % parameter update. | |
| 44 % | |
| 45 % OPTIONS(9) should be set to 1 to check the user defined gradient | |
| 46 % function GRADF with GRADCHEK. This is carried out at the initial | |
| 47 % parameter vector X. | |
| 48 % | |
| 49 % OPTIONS(10) returns the total number of function evaluations | |
| 50 % (including those in any line searches). | |
| 51 % | |
| 52 % OPTIONS(11) returns the total number of gradient evaluations. | |
| 53 % | |
| 54 % OPTIONS(14) is the maximum number of iterations; default 100. | |
| 55 % | |
| 56 % OPTIONS(15) is the precision in parameter space of the line search; | |
| 57 % default FOPTIONS(2). | |
| 58 % | |
| 59 % OPTIONS(17) is the momentum; default 0.5. It should be scaled by the | |
| 60 % inverse of the number of data points. | |
| 61 % | |
| 62 % OPTIONS(18) is the learning rate; default 0.01. It should be scaled | |
| 63 % by the inverse of the number of data points. | |
| 64 % | |
| 65 % See also | |
| 66 % CONJGRAD, LINEMIN, OLGD, MINBRACK, QUASINEW, SCG | |
| 67 % | |
| 68 | |
| 69 % Copyright (c) Ian T Nabney (1996-2001) | |
| 70 | |
| 71 % Set up the options. | |
| 72 if length(options) < 18 | |
| 73 error('Options vector too short') | |
| 74 end | |
| 75 | |
| 76 if (options(14)) | |
| 77 niters = options(14); | |
| 78 else | |
| 79 niters = 100; | |
| 80 end | |
| 81 | |
| 82 line_min_flag = 0; % Flag for line minimisation option | |
| 83 if (round(options(7)) == 1) | |
| 84 % Use line minimisation | |
| 85 line_min_flag = 1; | |
| 86 % Set options for line minimiser | |
| 87 line_options = foptions; | |
| 88 if options(15) > 0 | |
| 89 line_options(2) = options(15); | |
| 90 end | |
| 91 else | |
| 92 % Learning rate: must be positive | |
| 93 if (options(18) > 0) | |
| 94 eta = options(18); | |
| 95 else | |
| 96 eta = 0.01; | |
| 97 end | |
| 98 % Momentum term: allow zero momentum | |
| 99 if (options(17) >= 0) | |
| 100 mu = options(17); | |
| 101 else | |
| 102 mu = 0.5; | |
| 103 end | |
| 104 end | |
| 105 | |
| 106 % Check function string | |
| 107 f = fcnchk(f, length(varargin)); | |
| 108 gradf = fcnchk(gradf, length(varargin)); | |
| 109 | |
| 110 % Display information if options(1) > 0 | |
| 111 display = options(1) > 0; | |
| 112 | |
| 113 % Work out if we need to compute f at each iteration. | |
| 114 % Needed if using line search or if display results or if termination | |
| 115 % criterion requires it. | |
| 116 fcneval = (options(7) | display | options(3)); | |
| 117 | |
| 118 % Check gradients | |
| 119 if (options(9) > 0) | |
| 120 feval('gradchek', x, f, gradf, varargin{:}); | |
| 121 end | |
| 122 | |
| 123 dxold = zeros(1, size(x, 2)); | |
| 124 xold = x; | |
| 125 fold = 0; % Must be initialised so that termination test can be performed | |
| 126 if fcneval | |
| 127 fnew = feval(f, x, varargin{:}); | |
| 128 options(10) = options(10) + 1; | |
| 129 fold = fnew; | |
| 130 end | |
| 131 | |
| 132 % Main optimization loop. | |
| 133 for j = 1:niters | |
| 134 xold = x; | |
| 135 grad = feval(gradf, x, varargin{:}); | |
| 136 options(11) = options(11) + 1; % Increment gradient evaluation counter | |
| 137 if (line_min_flag ~= 1) | |
| 138 dx = mu*dxold - eta*grad; | |
| 139 x = x + dx; | |
| 140 dxold = dx; | |
| 141 if fcneval | |
| 142 fold = fnew; | |
| 143 fnew = feval(f, x, varargin{:}); | |
| 144 options(10) = options(10) + 1; | |
| 145 end | |
| 146 else | |
| 147 sd = - grad./norm(grad); % New search direction. | |
| 148 fold = fnew; | |
| 149 % Do a line search: normalise search direction to have length 1 | |
| 150 [lmin, line_options] = feval('linemin', f, x, sd, fold, ... | |
| 151 line_options, varargin{:}); | |
| 152 options(10) = options(10) + line_options(10); | |
| 153 x = xold + lmin*sd; | |
| 154 fnew = line_options(8); | |
| 155 end | |
| 156 if nargout >= 3 | |
| 157 flog(j) = fnew; | |
| 158 if nargout >= 4 | |
| 159 pointlog(j, :) = x; | |
| 160 end | |
| 161 end | |
| 162 if display | |
| 163 fprintf(1, 'Cycle %5d Function %11.8f\n', j, fnew); | |
| 164 end | |
| 165 if (max(abs(x - xold)) < options(2) & abs(fnew - fold) < options(3)) | |
| 166 % Termination criteria are met | |
| 167 options(8) = fnew; | |
| 168 return; | |
| 169 end | |
| 170 end | |
| 171 | |
| 172 if fcneval | |
| 173 options(8) = fnew; | |
| 174 else | |
| 175 options(8) = feval(f, x, varargin{:}); | |
| 176 options(10) = options(10) + 1; | |
| 177 end | |
| 178 if (options(1) >= 0) | |
| 179 disp(maxitmess); | |
| 180 end |
