Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_chmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_chmm.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,103 @@ +function bnet = mk_chmm(N, Q, Y, discrete_obs, coupled, CPD) +% MK_CHMM Make a coupled Hidden Markov Model +% +% There are N hidden nodes, each connected to itself and its two nearest neighbors in the next +% slice (apart from the edges, where there is 1 nearest neighbor). +% +% Example: If N = 3, the hidden backbone is as follows, where all arrows point to the righ+t +% +% X1--X2 +% \/ +% /\ +% X2--X2 +% \/ +% /\ +% X3--X3 +% +% Each hidden node has a "private" observed child (not shown). +% +% BNET = MK_CHMM(N, Q, Y) +% Each hidden node is discrete and has Q values. +% Each observed node is a Gaussian vector of length Y. +% +% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS) +% If discrete_obs = 1, the observations are discrete (values in {1, .., Y}). +% +% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED) +% If coupled = 0, the chains are not coupled, i.e., we make N parallel HMMs. +% +% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED, CPDs) +% means use the specified CPD structures instead of creating random params. +% CPD{i}.CPT, i=1:N specifies the prior +% CPD{i}.CPT, i=2N+1:3N specifies the transition model +% CPD{i}.mean, CPD{i}.cov, i=N+1:2N specifies the observation model if Gaussian +% CPD{i}.CPT, i=N+1:2N if discrete + + +if nargin < 2, Q = 2; end +if nargin < 3, Y = 1; end +if nargin < 4, discrete_obs = 0; end +if nargin < 5, coupled = 1; end +if nargin < 6, rnd = 1; else rnd = 0; end + +ss = N*2; +hnodes = 1:N; +onodes = (1:N)+N; + +intra = zeros(ss); +for i=1:N + intra(hnodes(i), onodes(i))=1; +end + +inter = zeros(ss); +if coupled + for i=1:N + inter(i, max(i-1,1):min(i+1,N))=1; + end +else + inter(1:N, 1:N) = eye(N); +end + +ns = [Q*ones(1,N) Y*ones(1,N)]; + +eclass1 = [hnodes onodes]; +eclass2 = [hnodes+ss onodes]; +if discrete_obs + dnodes = 1:ss; +else + dnodes = hnodes; +end +bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... + 'observed', onodes); + +if rnd + for i=hnodes(:)' + bnet.CPD{i} = tabular_CPD(bnet, i); + end + for i=onodes(:)' + if discrete_obs + bnet.CPD{i} = tabular_CPD(bnet, i); + else + bnet.CPD{i} = gaussian_CPD(bnet, i); + end + end + for i=hnodes(:)'+ss + bnet.CPD{i} = tabular_CPD(bnet, i); + end +else + for i=hnodes(:)' + bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); + end + for i=onodes(:)' + if discrete_obs + bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); + else + bnet.CPD{i} = gaussian_CPD(bnet, i, CPD{i}.mean, CPD{i}.cov); + end + end + for i=hnodes(:)'+ss + bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); + end +end + +