annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_chmm.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function bnet = mk_chmm(N, Q, Y, discrete_obs, coupled, CPD)
wolffd@0 2 % MK_CHMM Make a coupled Hidden Markov Model
wolffd@0 3 %
wolffd@0 4 % There are N hidden nodes, each connected to itself and its two nearest neighbors in the next
wolffd@0 5 % slice (apart from the edges, where there is 1 nearest neighbor).
wolffd@0 6 %
wolffd@0 7 % Example: If N = 3, the hidden backbone is as follows, where all arrows point to the righ+t
wolffd@0 8 %
wolffd@0 9 % X1--X2
wolffd@0 10 % \/
wolffd@0 11 % /\
wolffd@0 12 % X2--X2
wolffd@0 13 % \/
wolffd@0 14 % /\
wolffd@0 15 % X3--X3
wolffd@0 16 %
wolffd@0 17 % Each hidden node has a "private" observed child (not shown).
wolffd@0 18 %
wolffd@0 19 % BNET = MK_CHMM(N, Q, Y)
wolffd@0 20 % Each hidden node is discrete and has Q values.
wolffd@0 21 % Each observed node is a Gaussian vector of length Y.
wolffd@0 22 %
wolffd@0 23 % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS)
wolffd@0 24 % If discrete_obs = 1, the observations are discrete (values in {1, .., Y}).
wolffd@0 25 %
wolffd@0 26 % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED)
wolffd@0 27 % If coupled = 0, the chains are not coupled, i.e., we make N parallel HMMs.
wolffd@0 28 %
wolffd@0 29 % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED, CPDs)
wolffd@0 30 % means use the specified CPD structures instead of creating random params.
wolffd@0 31 % CPD{i}.CPT, i=1:N specifies the prior
wolffd@0 32 % CPD{i}.CPT, i=2N+1:3N specifies the transition model
wolffd@0 33 % CPD{i}.mean, CPD{i}.cov, i=N+1:2N specifies the observation model if Gaussian
wolffd@0 34 % CPD{i}.CPT, i=N+1:2N if discrete
wolffd@0 35
wolffd@0 36
wolffd@0 37 if nargin < 2, Q = 2; end
wolffd@0 38 if nargin < 3, Y = 1; end
wolffd@0 39 if nargin < 4, discrete_obs = 0; end
wolffd@0 40 if nargin < 5, coupled = 1; end
wolffd@0 41 if nargin < 6, rnd = 1; else rnd = 0; end
wolffd@0 42
wolffd@0 43 ss = N*2;
wolffd@0 44 hnodes = 1:N;
wolffd@0 45 onodes = (1:N)+N;
wolffd@0 46
wolffd@0 47 intra = zeros(ss);
wolffd@0 48 for i=1:N
wolffd@0 49 intra(hnodes(i), onodes(i))=1;
wolffd@0 50 end
wolffd@0 51
wolffd@0 52 inter = zeros(ss);
wolffd@0 53 if coupled
wolffd@0 54 for i=1:N
wolffd@0 55 inter(i, max(i-1,1):min(i+1,N))=1;
wolffd@0 56 end
wolffd@0 57 else
wolffd@0 58 inter(1:N, 1:N) = eye(N);
wolffd@0 59 end
wolffd@0 60
wolffd@0 61 ns = [Q*ones(1,N) Y*ones(1,N)];
wolffd@0 62
wolffd@0 63 eclass1 = [hnodes onodes];
wolffd@0 64 eclass2 = [hnodes+ss onodes];
wolffd@0 65 if discrete_obs
wolffd@0 66 dnodes = 1:ss;
wolffd@0 67 else
wolffd@0 68 dnodes = hnodes;
wolffd@0 69 end
wolffd@0 70 bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ...
wolffd@0 71 'observed', onodes);
wolffd@0 72
wolffd@0 73 if rnd
wolffd@0 74 for i=hnodes(:)'
wolffd@0 75 bnet.CPD{i} = tabular_CPD(bnet, i);
wolffd@0 76 end
wolffd@0 77 for i=onodes(:)'
wolffd@0 78 if discrete_obs
wolffd@0 79 bnet.CPD{i} = tabular_CPD(bnet, i);
wolffd@0 80 else
wolffd@0 81 bnet.CPD{i} = gaussian_CPD(bnet, i);
wolffd@0 82 end
wolffd@0 83 end
wolffd@0 84 for i=hnodes(:)'+ss
wolffd@0 85 bnet.CPD{i} = tabular_CPD(bnet, i);
wolffd@0 86 end
wolffd@0 87 else
wolffd@0 88 for i=hnodes(:)'
wolffd@0 89 bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT);
wolffd@0 90 end
wolffd@0 91 for i=onodes(:)'
wolffd@0 92 if discrete_obs
wolffd@0 93 bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT);
wolffd@0 94 else
wolffd@0 95 bnet.CPD{i} = gaussian_CPD(bnet, i, CPD{i}.mean, CPD{i}.cov);
wolffd@0 96 end
wolffd@0 97 end
wolffd@0 98 for i=hnodes(:)'+ss
wolffd@0 99 bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT);
wolffd@0 100 end
wolffd@0 101 end
wolffd@0 102
wolffd@0 103