Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/arhmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/arhmm1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,42 @@ +% Make an HMM with autoregressive Gaussian observations (switching AR model) +% X1 -> X2 +% | | +% v v +% Y1 -> Y2 + +seed = 0; +rand('state', seed); +randn('state', seed); + +intra = zeros(2); +intra(1,2) = 1; +inter = zeros(2); +inter(1,1) = 1; +inter(2,2) = 1; +n = 2; + +Q = 2; % num hidden states +O = 2; % size of observed vector + +ns = [Q O]; +dnodes = 1; +onodes = [2]; +bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes); + +bnet.CPD{1} = tabular_CPD(bnet, 1); +bnet.CPD{2} = gaussian_CPD(bnet, 2); +bnet.CPD{3} = tabular_CPD(bnet, 3); +bnet.CPD{4} = gaussian_CPD(bnet, 4); + + +T = 10; % fixed length sequences + +engine = {}; +%engine{end+1} = hmm_inf_engine(bnet); +engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); +%engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); +%engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); + +inf_time = cmp_inference_dbn(bnet, engine, T, 'check_ll',1); +learning_time = cmp_learning_dbn(bnet, engine, T, 'check_ll', 1); +