Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/arhmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 % Make an HMM with autoregressive Gaussian observations (switching AR model) |
wolffd@0 | 2 % X1 -> X2 |
wolffd@0 | 3 % | | |
wolffd@0 | 4 % v v |
wolffd@0 | 5 % Y1 -> Y2 |
wolffd@0 | 6 |
wolffd@0 | 7 seed = 0; |
wolffd@0 | 8 rand('state', seed); |
wolffd@0 | 9 randn('state', seed); |
wolffd@0 | 10 |
wolffd@0 | 11 intra = zeros(2); |
wolffd@0 | 12 intra(1,2) = 1; |
wolffd@0 | 13 inter = zeros(2); |
wolffd@0 | 14 inter(1,1) = 1; |
wolffd@0 | 15 inter(2,2) = 1; |
wolffd@0 | 16 n = 2; |
wolffd@0 | 17 |
wolffd@0 | 18 Q = 2; % num hidden states |
wolffd@0 | 19 O = 2; % size of observed vector |
wolffd@0 | 20 |
wolffd@0 | 21 ns = [Q O]; |
wolffd@0 | 22 dnodes = 1; |
wolffd@0 | 23 onodes = [2]; |
wolffd@0 | 24 bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes); |
wolffd@0 | 25 |
wolffd@0 | 26 bnet.CPD{1} = tabular_CPD(bnet, 1); |
wolffd@0 | 27 bnet.CPD{2} = gaussian_CPD(bnet, 2); |
wolffd@0 | 28 bnet.CPD{3} = tabular_CPD(bnet, 3); |
wolffd@0 | 29 bnet.CPD{4} = gaussian_CPD(bnet, 4); |
wolffd@0 | 30 |
wolffd@0 | 31 |
wolffd@0 | 32 T = 10; % fixed length sequences |
wolffd@0 | 33 |
wolffd@0 | 34 engine = {}; |
wolffd@0 | 35 %engine{end+1} = hmm_inf_engine(bnet); |
wolffd@0 | 36 engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); |
wolffd@0 | 37 %engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); |
wolffd@0 | 38 %engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); |
wolffd@0 | 39 |
wolffd@0 | 40 inf_time = cmp_inference_dbn(bnet, engine, T, 'check_ll',1); |
wolffd@0 | 41 learning_time = cmp_learning_dbn(bnet, engine, T, 'check_ll', 1); |
wolffd@0 | 42 |