Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/CPDs/@mlp_CPD/convert_to_table.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/CPDs/@mlp_CPD/convert_to_table.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,80 @@ +function T = convert_to_table(CPD, domain, evidence) +% CONVERT_TO_TABLE Convert a mlp CPD to a table, incorporating any evidence +% T = convert_to_table(CPD, domain, evidence) + +self = domain(end); +ps = domain(1:end-1); % self' parents +%cps = myintersect(ps, cnodes); % self' continous parents +cnodes = domain(CPD.cpndx); +cps = myintersect(ps, cnodes); +odom = domain(~isemptycell(evidence(domain))); % obs nodes in the net +assert(myismember(cps, odom)); % !ALL the CTS parents must be observed! +ns(cps)=1; +dps = mysetdiff(ps, cps); % self' discrete parents +dobs = myintersect(dps, odom); % discrete obs parents + +% Extract the params compatible with the observations (if any) on the discrete parents (if any) + +if ~isempty(dobs), + dvals = cat(1, evidence{dobs}); + ns_eff= CPD.sizes; % effective node sizes + ens=ns_eff; + ens(dobs) = 1; + S=prod(ens(dps)); + subs = ind2subv(ens(dps), 1:S); + mask = find_equiv_posns(dobs, dps); + for i=1:length(mask), + subs(:,mask(i)) = dvals(i); + end + support = subv2ind(ns_eff(dps), subs)'; +else + ns_eff= CPD.sizes; + support=[1:prod(ns_eff(dps))]; +end + +W1=[]; b1=[]; W2=[]; b2=[]; + +W1 = CPD.W1(:,:,support); +b1= CPD.b1(support,:); +W2 = CPD.W2(:,:,support); +b2= CPD.b2(support,:); +ns(odom) = 1; +dpsize = prod(ns(dps)); % overall size of the self' discrete parents + +x = cat(1, evidence{cps}); +ndata=size(x,2); + +if ~isempty(evidence{self}) % + app=struct(CPD); % + ns(self)=app.mlp{1}.nout; % pump up self to the original dimension if observed + clear app; % +end % + +T =zeros(dpsize, ns(self)); % +for i=1:dpsize % + W1app = W1(:,:,i); % + b1app = b1(i,:); % + W2app = W2(:,:,i); % + b2app = b2(i,:); % for each of the dpsize combinations of self'parents values + z = tanh(x(:)'*W1app + ones(ndata, 1)*b1app); % we tabulate the corrisponding glm model + a = z*W2app + ones(ndata, 1)*b2app; % (element of the cell array CPD.glim) + appoggio = normalise(exp(a)); % + T(i,:)=appoggio; % + W1app=[]; W2app=[]; b1app=[]; b2app=[]; % + z=[]; a=[]; appoggio=[]; % +end % + +if ~isempty(evidence{self}) + appoggio=[]; % + appoggio=zeros(1,ns(self)); % + r = evidence{self}; %...if self is observed => in output there's only the probability of the 'true' class + for i=1:dpsize % + appoggio(i)=T(i,r); % + end + T=zeros(dpsize,1); + for i=1:dpsize + T(i,1)=appoggio(i); + end + clear appoggio; + ns(self) = 1; +end