comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@mlp_CPD/convert_to_table.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function T = convert_to_table(CPD, domain, evidence)
2 % CONVERT_TO_TABLE Convert a mlp CPD to a table, incorporating any evidence
3 % T = convert_to_table(CPD, domain, evidence)
4
5 self = domain(end);
6 ps = domain(1:end-1); % self' parents
7 %cps = myintersect(ps, cnodes); % self' continous parents
8 cnodes = domain(CPD.cpndx);
9 cps = myintersect(ps, cnodes);
10 odom = domain(~isemptycell(evidence(domain))); % obs nodes in the net
11 assert(myismember(cps, odom)); % !ALL the CTS parents must be observed!
12 ns(cps)=1;
13 dps = mysetdiff(ps, cps); % self' discrete parents
14 dobs = myintersect(dps, odom); % discrete obs parents
15
16 % Extract the params compatible with the observations (if any) on the discrete parents (if any)
17
18 if ~isempty(dobs),
19 dvals = cat(1, evidence{dobs});
20 ns_eff= CPD.sizes; % effective node sizes
21 ens=ns_eff;
22 ens(dobs) = 1;
23 S=prod(ens(dps));
24 subs = ind2subv(ens(dps), 1:S);
25 mask = find_equiv_posns(dobs, dps);
26 for i=1:length(mask),
27 subs(:,mask(i)) = dvals(i);
28 end
29 support = subv2ind(ns_eff(dps), subs)';
30 else
31 ns_eff= CPD.sizes;
32 support=[1:prod(ns_eff(dps))];
33 end
34
35 W1=[]; b1=[]; W2=[]; b2=[];
36
37 W1 = CPD.W1(:,:,support);
38 b1= CPD.b1(support,:);
39 W2 = CPD.W2(:,:,support);
40 b2= CPD.b2(support,:);
41 ns(odom) = 1;
42 dpsize = prod(ns(dps)); % overall size of the self' discrete parents
43
44 x = cat(1, evidence{cps});
45 ndata=size(x,2);
46
47 if ~isempty(evidence{self}) %
48 app=struct(CPD); %
49 ns(self)=app.mlp{1}.nout; % pump up self to the original dimension if observed
50 clear app; %
51 end %
52
53 T =zeros(dpsize, ns(self)); %
54 for i=1:dpsize %
55 W1app = W1(:,:,i); %
56 b1app = b1(i,:); %
57 W2app = W2(:,:,i); %
58 b2app = b2(i,:); % for each of the dpsize combinations of self'parents values
59 z = tanh(x(:)'*W1app + ones(ndata, 1)*b1app); % we tabulate the corrisponding glm model
60 a = z*W2app + ones(ndata, 1)*b2app; % (element of the cell array CPD.glim)
61 appoggio = normalise(exp(a)); %
62 T(i,:)=appoggio; %
63 W1app=[]; W2app=[]; b1app=[]; b2app=[]; %
64 z=[]; a=[]; appoggio=[]; %
65 end %
66
67 if ~isempty(evidence{self})
68 appoggio=[]; %
69 appoggio=zeros(1,ns(self)); %
70 r = evidence{self}; %...if self is observed => in output there's only the probability of the 'true' class
71 for i=1:dpsize %
72 appoggio(i)=T(i,r); %
73 end
74 T=zeros(dpsize,1);
75 for i=1:dpsize
76 T(i,1)=appoggio(i);
77 end
78 clear appoggio;
79 ns(self) = 1;
80 end