comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/Models/mk_ideker_bnet.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function bnet = mk_ideker_bnet(CPD_type, p)
2 % MK_IDEKER_BNET Make the Bayes net in the PSB'00 paper by Ideker, Thorsson and Karp.
3 %
4 % BNET = MK_IDEKER_BNET uses the boolean functions specified in the paper
5 % "Discovery of regulatory interactions through perturbation: inference and experimental design",
6 % Pacific Symp. on Biocomputing, 2000.
7 %
8 % BNET = MK_IDEKER_BNET('root') uses the above boolean functions, but puts a uniform
9 % distribution on the root nodes.
10 %
11 % BNET = MK_IDEKER_BNET('cpt', p) uses random parameters drawn from a Dirichlet(p,p,...)
12 % distribution. If p << 1, this is nearly deterministic; if p >> 1, this is nearly uniform.
13 %
14 % BNET = MK_IDEKER_BNET('bool') makes each CPT a random boolean function.
15 %
16 % BNET = MK_IDEKER_BNET('orig') is the same as MK_IDEKER_BNET.
17
18
19 if nargin == 0
20 CPD_type = 'orig';
21 end
22
23 n = 4;
24 dag = zeros(n);
25 dag(1,3)=1;
26 dag(2,[3 4])=1;
27 dag(3,4)=1;
28 ns = 2*ones(1,n);
29 bnet = mk_bnet(dag, ns);
30
31 switch CPD_type
32 case 'orig',
33 bnet.CPD{1} = tabular_CPD(bnet, 1, [0 1]);
34 bnet.CPD{2} = tabular_CPD(bnet, 2, [0 1]);
35 bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)'));
36 bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)'));
37 case 'root',
38 bnet.CPD{1} = tabular_CPD(bnet, 1, [0.5 0.5]);
39 bnet.CPD{2} = tabular_CPD(bnet, 2, [0.5 0.5]);
40 bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)'));
41 bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)'));
42 case 'bool',
43 for i=1:n
44 bnet.CPD{i} = boolean_CPD(bnet, i, 'rnd');
45 end
46 case 'cpt',
47 for i=1:n
48 bnet.CPD{i} = tabular_CPD(bnet, i, p);
49 end
50 otherwise,
51 error(['unknown type ' CPD_type]);
52 end