comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/Brutti/Belief_hme.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % Sigmoid Belief Hierarchical Mixtures of Experts
2
3 clear all
4 clc
5 X = 1;
6 Q1 = 2;
7 Q2 = 3;
8 Y = 4;
9 dag = zeros(4,4);
10 dag(X,[Q1 Q2 Y]) = 1;
11 dag(Q1, [Q2 Y]) = 1;
12 dag(Q2,Y)=1;
13 ns = [1 3 4 3];
14 dnodes = [2 3 4];
15 onodes=[1 2 3 4];
16 bnet = mk_bnet(dag,ns, dnodes);
17
18 rand('state',0); randn('state',0);
19
20 bnet.CPD{1} = root_CPD(bnet, 1);
21 bnet.CPD{2} = softmax_CPD(bnet, 2, 'max_iter', 3);
22 bnet.CPD{3} = softmax_CPD(bnet, 3, 'discrete', [2], 'max_iter', 3);
23 bnet.CPD{4} = softmax_CPD(bnet, 4, 'discrete', [2 3], 'max_iter', 3);
24
25 T=5;
26 cases = cell(4, T);
27 cases(1,:)=num2cell(rand(1,T));
28 %cases(2,:)=num2cell(round(rand(1,T)*2)+1);
29 %cases(3,:)=num2cell(round(rand(1,T)*3)+1);
30 cases(4,:)=num2cell(round(rand(1,T)*2)+1);
31
32 engine = jtree_inf_engine(bnet, onodes);
33
34 [engine, loglik] = enter_evidence(engine, cases);
35
36 disp('learning-------------------------------------------')
37 [bnet2, LL2] = learn_params_em(engine, cases, 4);