annotate toolboxes/FullBNT-1.0.7/nethelp3.3/index.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 NETLAB Reference Documentation
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> NETLAB Online Reference Documentation </H1>
wolffd@0 9 Welcome to the NETLAB online reference documentation.
wolffd@0 10 The NETLAB simulation software is designed to provide all the tools necessary
wolffd@0 11 for principled and theoretically well founded application development. The
wolffd@0 12 NETLAB library is based on the approach and techniques described in <I>Neural
wolffd@0 13 Networks for Pattern Recognition </I>(Bishop, 1995). The library includes software
wolffd@0 14 implementations of a wide range of data analysis techniques, many of which are
wolffd@0 15 not widely available, and are rarely, if ever, included in standard neural
wolffd@0 16 network simulation packages.
wolffd@0 17 <p>The online reference documentation provides direct hypertext links to specific Netlab function descriptions.
wolffd@0 18 <p>If you have any comments or problems to report, please contact Ian Nabney (<a href="mailto:i.t.nabney@aston.ac.uk"><tt>i.t.nabney@aston.ac.uk</tt></a>) or Christopher Bishop (<a href="mailto:c.m.bishop@aston.ac.uk"><tt>c.m.bishop@aston.ac.uk</tt></a>).<H1> Index
wolffd@0 19 </H1>
wolffd@0 20 An alphabetic list of functions in Netlab.<p>
wolffd@0 21 <DL>
wolffd@0 22 <DT>
wolffd@0 23 <CODE><a href="conffig.htm">conffig</a></CODE><DD>
wolffd@0 24 Display a confusion matrix.
wolffd@0 25 <DT>
wolffd@0 26 <CODE><a href="confmat.htm">confmat</a></CODE><DD>
wolffd@0 27 Compute a confusion matrix.
wolffd@0 28 <DT>
wolffd@0 29 <CODE><a href="conjgrad.htm">conjgrad</a></CODE><DD>
wolffd@0 30 Conjugate gradients optimization.
wolffd@0 31 <DT>
wolffd@0 32 <CODE><a href="consist.htm">consist</a></CODE><DD>
wolffd@0 33 Check that arguments are consistent.
wolffd@0 34 <DT>
wolffd@0 35 <CODE><a href="convertoldnet.htm">convertoldnet</a></CODE><DD>
wolffd@0 36 Convert pre-2.3 release MLP and MDN nets to new format
wolffd@0 37 <DT>
wolffd@0 38 <CODE><a href="datread.htm">datread</a></CODE><DD>
wolffd@0 39 Read data from an ascii file.
wolffd@0 40 <DT>
wolffd@0 41 <CODE><a href="datwrite.htm">datwrite</a></CODE><DD>
wolffd@0 42 Write data to ascii file.
wolffd@0 43 <DT>
wolffd@0 44 <CODE><a href="dem2ddat.htm">dem2ddat</a></CODE><DD>
wolffd@0 45 Generates two dimensional data for demos.
wolffd@0 46 <DT>
wolffd@0 47 <CODE><a href="demard.htm">demard</a></CODE><DD>
wolffd@0 48 Automatic relevance determination using the MLP.
wolffd@0 49 <DT>
wolffd@0 50 <CODE><a href="demev1.htm">demev1</a></CODE><DD>
wolffd@0 51 Demonstrate Bayesian regression for the MLP.
wolffd@0 52 <DT>
wolffd@0 53 <CODE><a href="demev2.htm">demev2</a></CODE><DD>
wolffd@0 54 Demonstrate Bayesian classification for the MLP.
wolffd@0 55 <DT>
wolffd@0 56 <CODE><a href="demev3.htm">demev3</a></CODE><DD>
wolffd@0 57 Demonstrate Bayesian regression for the RBF.
wolffd@0 58 <DT>
wolffd@0 59 <CODE><a href="demgauss.htm">demgauss</a></CODE><DD>
wolffd@0 60 Demonstrate sampling from Gaussian distributions.
wolffd@0 61 <DT>
wolffd@0 62 <CODE><a href="demglm1.htm">demglm1</a></CODE><DD>
wolffd@0 63 Demonstrate simple classification using a generalized linear model.
wolffd@0 64 <DT>
wolffd@0 65 <CODE><a href="demglm2.htm">demglm2</a></CODE><DD>
wolffd@0 66 Demonstrate simple classification using a generalized linear model.
wolffd@0 67 <DT>
wolffd@0 68 <CODE><a href="demgmm1.htm">demgmm1</a></CODE><DD>
wolffd@0 69 Demonstrate density modelling with a Gaussian mixture model.
wolffd@0 70 <DT>
wolffd@0 71 <CODE><a href="demgmm3.htm">demgmm3</a></CODE><DD>
wolffd@0 72 Demonstrate density modelling with a Gaussian mixture model.
wolffd@0 73 <DT>
wolffd@0 74 <CODE><a href="demgmm4.htm">demgmm4</a></CODE><DD>
wolffd@0 75 Demonstrate density modelling with a Gaussian mixture model.
wolffd@0 76 <DT>
wolffd@0 77 <CODE><a href="demgmm5.htm">demgmm5</a></CODE><DD>
wolffd@0 78 Demonstrate density modelling with a PPCA mixture model.
wolffd@0 79 <DT>
wolffd@0 80 <CODE><a href="demgp.htm">demgp</a></CODE><DD>
wolffd@0 81 Demonstrate simple regression using a Gaussian Process.
wolffd@0 82 <DT>
wolffd@0 83 <CODE><a href="demgpard.htm">demgpard</a></CODE><DD>
wolffd@0 84 Demonstrate ARD using a Gaussian Process.
wolffd@0 85 <DT>
wolffd@0 86 <CODE><a href="demgpot.htm">demgpot</a></CODE><DD>
wolffd@0 87 Computes the gradient of the negative log likelihood for a mixture model.
wolffd@0 88 <DT>
wolffd@0 89 <CODE><a href="demgtm1.htm">demgtm1</a></CODE><DD>
wolffd@0 90 Demonstrate EM for GTM.
wolffd@0 91 <DT>
wolffd@0 92 <CODE><a href="demgtm2.htm">demgtm2</a></CODE><DD>
wolffd@0 93 Demonstrate GTM for visualisation.
wolffd@0 94 <DT>
wolffd@0 95 <CODE><a href="demhint.htm">demhint</a></CODE><DD>
wolffd@0 96 Demonstration of Hinton diagram for 2-layer feed-forward network.
wolffd@0 97 <DT>
wolffd@0 98 <CODE><a href="demhmc1.htm">demhmc1</a></CODE><DD>
wolffd@0 99 Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians.
wolffd@0 100 <DT>
wolffd@0 101 <CODE><a href="demhmc2.htm">demhmc2</a></CODE><DD>
wolffd@0 102 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.
wolffd@0 103 <DT>
wolffd@0 104 <CODE><a href="demhmc3.htm">demhmc3</a></CODE><DD>
wolffd@0 105 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.
wolffd@0 106 <DT>
wolffd@0 107 <CODE><a href="demkmean.htm">demkmean</a></CODE><DD>
wolffd@0 108 Demonstrate simple clustering model trained with K-means.
wolffd@0 109 <DT>
wolffd@0 110 <CODE><a href="demknn1.htm">demknn1</a></CODE><DD>
wolffd@0 111 Demonstrate nearest neighbour classifier.
wolffd@0 112 <DT>
wolffd@0 113 <CODE><a href="demmdn1.htm">demmdn1</a></CODE><DD>
wolffd@0 114 Demonstrate fitting a multi-valued function using a Mixture Density Network.
wolffd@0 115 <DT>
wolffd@0 116 <CODE><a href="demmet1.htm">demmet1</a></CODE><DD>
wolffd@0 117 Demonstrate Markov Chain Monte Carlo sampling on a Gaussian.
wolffd@0 118 <DT>
wolffd@0 119 <CODE><a href="demmlp1.htm">demmlp1</a></CODE><DD>
wolffd@0 120 Demonstrate simple regression using a multi-layer perceptron
wolffd@0 121 <DT>
wolffd@0 122 <CODE><a href="demmlp2.htm">demmlp2</a></CODE><DD>
wolffd@0 123 Demonstrate simple classification using a multi-layer perceptron
wolffd@0 124 <DT>
wolffd@0 125 <CODE><a href="demnlab.htm">demnlab</a></CODE><DD>
wolffd@0 126 A front-end Graphical User Interface to the demos
wolffd@0 127 <DT>
wolffd@0 128 <CODE><a href="demns1.htm">demns1</a></CODE><DD>
wolffd@0 129 Demonstrate Neuroscale for visualisation.
wolffd@0 130 <DT>
wolffd@0 131 <CODE><a href="demolgd1.htm">demolgd1</a></CODE><DD>
wolffd@0 132 Demonstrate simple MLP optimisation with on-line gradient descent
wolffd@0 133 <DT>
wolffd@0 134 <CODE><a href="demopt1.htm">demopt1</a></CODE><DD>
wolffd@0 135 Demonstrate different optimisers on Rosenbrock's function.
wolffd@0 136 <DT>
wolffd@0 137 <CODE><a href="dempot.htm">dempot</a></CODE><DD>
wolffd@0 138 Computes the negative log likelihood for a mixture model.
wolffd@0 139 <DT>
wolffd@0 140 <CODE><a href="demprgp.htm">demprgp</a></CODE><DD>
wolffd@0 141 Demonstrate sampling from a Gaussian Process prior.
wolffd@0 142 <DT>
wolffd@0 143 <CODE><a href="demprior.htm">demprior</a></CODE><DD>
wolffd@0 144 Demonstrate sampling from a multi-parameter Gaussian prior.
wolffd@0 145 <DT>
wolffd@0 146 <CODE><a href="demrbf1.htm">demrbf1</a></CODE><DD>
wolffd@0 147 Demonstrate simple regression using a radial basis function network.
wolffd@0 148 <DT>
wolffd@0 149 <CODE><a href="demsom1.htm">demsom1</a></CODE><DD>
wolffd@0 150 Demonstrate SOM for visualisation.
wolffd@0 151 <DT>
wolffd@0 152 <CODE><a href="demtrain.htm">demtrain</a></CODE><DD>
wolffd@0 153 Demonstrate training of MLP network.
wolffd@0 154 <DT>
wolffd@0 155 <CODE><a href="dist2.htm">dist2</a></CODE><DD>
wolffd@0 156 Calculates squared distance between two sets of points.
wolffd@0 157 <DT>
wolffd@0 158 <CODE><a href="eigdec.htm">eigdec</a></CODE><DD>
wolffd@0 159 Sorted eigendecomposition
wolffd@0 160 <DT>
wolffd@0 161 <CODE><a href="errbayes.htm">errbayes</a></CODE><DD>
wolffd@0 162 Evaluate Bayesian error function for network.
wolffd@0 163 <DT>
wolffd@0 164 <CODE><a href="evidence.htm">evidence</a></CODE><DD>
wolffd@0 165 Re-estimate hyperparameters using evidence approximation.
wolffd@0 166 <DT>
wolffd@0 167 <CODE><a href="fevbayes.htm">fevbayes</a></CODE><DD>
wolffd@0 168 Evaluate Bayesian regularisation for network forward propagation.
wolffd@0 169 <DT>
wolffd@0 170 <CODE><a href="gauss.htm">gauss</a></CODE><DD>
wolffd@0 171 Evaluate a Gaussian distribution.
wolffd@0 172 <DT>
wolffd@0 173 <CODE><a href="gbayes.htm">gbayes</a></CODE><DD>
wolffd@0 174 Evaluate gradient of Bayesian error function for network.
wolffd@0 175 <DT>
wolffd@0 176 <CODE><a href="glm.htm">glm</a></CODE><DD>
wolffd@0 177 Create a generalized linear model.
wolffd@0 178 <DT>
wolffd@0 179 <CODE><a href="glmderiv.htm">glmderiv</a></CODE><DD>
wolffd@0 180 Evaluate derivatives of GLM outputs with respect to weights.
wolffd@0 181 <DT>
wolffd@0 182 <CODE><a href="glmerr.htm">glmerr</a></CODE><DD>
wolffd@0 183 Evaluate error function for generalized linear model.
wolffd@0 184 <DT>
wolffd@0 185 <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE><DD>
wolffd@0 186 Forward propagation with evidence for GLM
wolffd@0 187 <DT>
wolffd@0 188 <CODE><a href="glmfwd.htm">glmfwd</a></CODE><DD>
wolffd@0 189 Forward propagation through generalized linear model.
wolffd@0 190 <DT>
wolffd@0 191 <CODE><a href="glmgrad.htm">glmgrad</a></CODE><DD>
wolffd@0 192 Evaluate gradient of error function for generalized linear model.
wolffd@0 193 <DT>
wolffd@0 194 <CODE><a href="glmhess.htm">glmhess</a></CODE><DD>
wolffd@0 195 Evaluate the Hessian matrix for a generalised linear model.
wolffd@0 196 <DT>
wolffd@0 197 <CODE><a href="glminit.htm">glminit</a></CODE><DD>
wolffd@0 198 Initialise the weights in a generalized linear model.
wolffd@0 199 <DT>
wolffd@0 200 <CODE><a href="glmpak.htm">glmpak</a></CODE><DD>
wolffd@0 201 Combines weights and biases into one weights vector.
wolffd@0 202 <DT>
wolffd@0 203 <CODE><a href="glmtrain.htm">glmtrain</a></CODE><DD>
wolffd@0 204 Specialised training of generalized linear model
wolffd@0 205 <DT>
wolffd@0 206 <CODE><a href="glmunpak.htm">glmunpak</a></CODE><DD>
wolffd@0 207 Separates weights vector into weight and bias matrices.
wolffd@0 208 <DT>
wolffd@0 209 <CODE><a href="gmm.htm">gmm</a></CODE><DD>
wolffd@0 210 Creates a Gaussian mixture model with specified architecture.
wolffd@0 211 <DT>
wolffd@0 212 <CODE><a href="gmmactiv.htm">gmmactiv</a></CODE><DD>
wolffd@0 213 Computes the activations of a Gaussian mixture model.
wolffd@0 214 <DT>
wolffd@0 215 <CODE><a href="gmmem.htm">gmmem</a></CODE><DD>
wolffd@0 216 EM algorithm for Gaussian mixture model.
wolffd@0 217 <DT>
wolffd@0 218 <CODE><a href="gmminit.htm">gmminit</a></CODE><DD>
wolffd@0 219 Initialises Gaussian mixture model from data
wolffd@0 220 <DT>
wolffd@0 221 <CODE><a href="gmmpak.htm">gmmpak</a></CODE><DD>
wolffd@0 222 Combines all the parameters in a Gaussian mixture model into one vector.
wolffd@0 223 <DT>
wolffd@0 224 <CODE><a href="gmmpost.htm">gmmpost</a></CODE><DD>
wolffd@0 225 Computes the class posterior probabilities of a Gaussian mixture model.
wolffd@0 226 <DT>
wolffd@0 227 <CODE><a href="gmmprob.htm">gmmprob</a></CODE><DD>
wolffd@0 228 Computes the data probability for a Gaussian mixture model.
wolffd@0 229 <DT>
wolffd@0 230 <CODE><a href="gmmsamp.htm">gmmsamp</a></CODE><DD>
wolffd@0 231 Sample from a Gaussian mixture distribution.
wolffd@0 232 <DT>
wolffd@0 233 <CODE><a href="gmmunpak.htm">gmmunpak</a></CODE><DD>
wolffd@0 234 Separates a vector of Gaussian mixture model parameters into its components.
wolffd@0 235 <DT>
wolffd@0 236 <CODE><a href="gp.htm">gp</a></CODE><DD>
wolffd@0 237 Create a Gaussian Process.
wolffd@0 238 <DT>
wolffd@0 239 <CODE><a href="gpcovar.htm">gpcovar</a></CODE><DD>
wolffd@0 240 Calculate the covariance for a Gaussian Process.
wolffd@0 241 <DT>
wolffd@0 242 <CODE><a href="gpcovarf.htm">gpcovarf</a></CODE><DD>
wolffd@0 243 Calculate the covariance function for a Gaussian Process.
wolffd@0 244 <DT>
wolffd@0 245 <CODE><a href="gpcovarp.htm">gpcovarp</a></CODE><DD>
wolffd@0 246 Calculate the prior covariance for a Gaussian Process.
wolffd@0 247 <DT>
wolffd@0 248 <CODE><a href="gperr.htm">gperr</a></CODE><DD>
wolffd@0 249 Evaluate error function for Gaussian Process.
wolffd@0 250 <DT>
wolffd@0 251 <CODE><a href="gpfwd.htm">gpfwd</a></CODE><DD>
wolffd@0 252 Forward propagation through Gaussian Process.
wolffd@0 253 <DT>
wolffd@0 254 <CODE><a href="gpgrad.htm">gpgrad</a></CODE><DD>
wolffd@0 255 Evaluate error gradient for Gaussian Process.
wolffd@0 256 <DT>
wolffd@0 257 <CODE><a href="gpinit.htm">gpinit</a></CODE><DD>
wolffd@0 258 Initialise Gaussian Process model.
wolffd@0 259 <DT>
wolffd@0 260 <CODE><a href="gppak.htm">gppak</a></CODE><DD>
wolffd@0 261 Combines GP hyperparameters into one vector.
wolffd@0 262 <DT>
wolffd@0 263 <CODE><a href="gpunpak.htm">gpunpak</a></CODE><DD>
wolffd@0 264 Separates hyperparameter vector into components.
wolffd@0 265 <DT>
wolffd@0 266 <CODE><a href="gradchek.htm">gradchek</a></CODE><DD>
wolffd@0 267 Checks a user-defined gradient function using finite differences.
wolffd@0 268 <DT>
wolffd@0 269 <CODE><a href="graddesc.htm">graddesc</a></CODE><DD>
wolffd@0 270 Gradient descent optimization.
wolffd@0 271 <DT>
wolffd@0 272 <CODE><a href="gsamp.htm">gsamp</a></CODE><DD>
wolffd@0 273 Sample from a Gaussian distribution.
wolffd@0 274 <DT>
wolffd@0 275 <CODE><a href="gtm.htm">gtm</a></CODE><DD>
wolffd@0 276 Create a Generative Topographic Map.
wolffd@0 277 <DT>
wolffd@0 278 <CODE><a href="gtmem.htm">gtmem</a></CODE><DD>
wolffd@0 279 EM algorithm for Generative Topographic Mapping.
wolffd@0 280 <DT>
wolffd@0 281 <CODE><a href="gtmfwd.htm">gtmfwd</a></CODE><DD>
wolffd@0 282 Forward propagation through GTM.
wolffd@0 283 <DT>
wolffd@0 284 <CODE><a href="gtminit.htm">gtminit</a></CODE><DD>
wolffd@0 285 Initialise the weights and latent sample in a GTM.
wolffd@0 286 <DT>
wolffd@0 287 <CODE><a href="gtmlmean.htm">gtmlmean</a></CODE><DD>
wolffd@0 288 Mean responsibility for data in a GTM.
wolffd@0 289 <DT>
wolffd@0 290 <CODE><a href="gtmlmode.htm">gtmlmode</a></CODE><DD>
wolffd@0 291 Mode responsibility for data in a GTM.
wolffd@0 292 <DT>
wolffd@0 293 <CODE><a href="gtmmag.htm">gtmmag</a></CODE><DD>
wolffd@0 294 Magnification factors for a GTM
wolffd@0 295 <DT>
wolffd@0 296 <CODE><a href="gtmpost.htm">gtmpost</a></CODE><DD>
wolffd@0 297 Latent space responsibility for data in a GTM.
wolffd@0 298 <DT>
wolffd@0 299 <CODE><a href="gtmprob.htm">gtmprob</a></CODE><DD>
wolffd@0 300 Probability for data under a GTM.
wolffd@0 301 <DT>
wolffd@0 302 <CODE><a href="hbayes.htm">hbayes</a></CODE><DD>
wolffd@0 303 Evaluate Hessian of Bayesian error function for network.
wolffd@0 304 <DT>
wolffd@0 305 <CODE><a href="hesschek.htm">hesschek</a></CODE><DD>
wolffd@0 306 Use central differences to confirm correct evaluation of Hessian matrix.
wolffd@0 307 <DT>
wolffd@0 308 <CODE><a href="hintmat.htm">hintmat</a></CODE><DD>
wolffd@0 309 Evaluates the coordinates of the patches for a Hinton diagram.
wolffd@0 310 <DT>
wolffd@0 311 <CODE><a href="hinton.htm">hinton</a></CODE><DD>
wolffd@0 312 Plot Hinton diagram for a weight matrix.
wolffd@0 313 <DT>
wolffd@0 314 <CODE><a href="histp.htm">histp</a></CODE><DD>
wolffd@0 315 Histogram estimate of 1-dimensional probability distribution.
wolffd@0 316 <DT>
wolffd@0 317 <CODE><a href="hmc.htm">hmc</a></CODE><DD>
wolffd@0 318 Hybrid Monte Carlo sampling.
wolffd@0 319 <DT>
wolffd@0 320 <CODE><a href="kmeans.htm">kmeans</a></CODE><DD>
wolffd@0 321 Trains a k means cluster model.
wolffd@0 322 <DT>
wolffd@0 323 <CODE><a href="knn.htm">knn</a></CODE><DD>
wolffd@0 324 Creates a K-nearest-neighbour classifier.
wolffd@0 325 <DT>
wolffd@0 326 <CODE><a href="knnfwd.htm">knnfwd</a></CODE><DD>
wolffd@0 327 Forward propagation through a K-nearest-neighbour classifier.
wolffd@0 328 <DT>
wolffd@0 329 <CODE><a href="linef.htm">linef</a></CODE><DD>
wolffd@0 330 Calculate function value along a line.
wolffd@0 331 <DT>
wolffd@0 332 <CODE><a href="linemin.htm">linemin</a></CODE><DD>
wolffd@0 333 One dimensional minimization.
wolffd@0 334 <DT>
wolffd@0 335 <CODE><a href="maxitmess.htm">maxitmess</a></CODE><DD>
wolffd@0 336 Create a standard error message when training reaches max. iterations.
wolffd@0 337 <DT>
wolffd@0 338 <CODE><a href="mdn.htm">mdn</a></CODE><DD>
wolffd@0 339 Creates a Mixture Density Network with specified architecture.
wolffd@0 340 <DT>
wolffd@0 341 <CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE><DD>
wolffd@0 342 Converts an MDN mixture data structure to array of GMMs.
wolffd@0 343 <DT>
wolffd@0 344 <CODE><a href="mdndist2.htm">mdndist2</a></CODE><DD>
wolffd@0 345 Calculates squared distance between centres of Gaussian kernels and data
wolffd@0 346 <DT>
wolffd@0 347 <CODE><a href="mdnerr.htm">mdnerr</a></CODE><DD>
wolffd@0 348 Evaluate error function for Mixture Density Network.
wolffd@0 349 <DT>
wolffd@0 350 <CODE><a href="mdnfwd.htm">mdnfwd</a></CODE><DD>
wolffd@0 351 Forward propagation through Mixture Density Network.
wolffd@0 352 <DT>
wolffd@0 353 <CODE><a href="mdngrad.htm">mdngrad</a></CODE><DD>
wolffd@0 354 Evaluate gradient of error function for Mixture Density Network.
wolffd@0 355 <DT>
wolffd@0 356 <CODE><a href="mdninit.htm">mdninit</a></CODE><DD>
wolffd@0 357 Initialise the weights in a Mixture Density Network.
wolffd@0 358 <DT>
wolffd@0 359 <CODE><a href="mdnpak.htm">mdnpak</a></CODE><DD>
wolffd@0 360 Combines weights and biases into one weights vector.
wolffd@0 361 <DT>
wolffd@0 362 <CODE><a href="mdnpost.htm">mdnpost</a></CODE><DD>
wolffd@0 363 Computes the posterior probability for each MDN mixture component.
wolffd@0 364 <DT>
wolffd@0 365 <CODE><a href="mdnprob.htm">mdnprob</a></CODE><DD>
wolffd@0 366 Computes the data probability likelihood for an MDN mixture structure.
wolffd@0 367 <DT>
wolffd@0 368 <CODE><a href="mdnunpak.htm">mdnunpak</a></CODE><DD>
wolffd@0 369 Separates weights vector into weight and bias matrices.
wolffd@0 370 <DT>
wolffd@0 371 <CODE><a href="metrop.htm">metrop</a></CODE><DD>
wolffd@0 372 Markov Chain Monte Carlo sampling with Metropolis algorithm.
wolffd@0 373 <DT>
wolffd@0 374 <CODE><a href="minbrack.htm">minbrack</a></CODE><DD>
wolffd@0 375 Bracket a minimum of a function of one variable.
wolffd@0 376 <DT>
wolffd@0 377 <CODE><a href="mlp.htm">mlp</a></CODE><DD>
wolffd@0 378 Create a 2-layer feedforward network.
wolffd@0 379 <DT>
wolffd@0 380 <CODE><a href="mlpbkp.htm">mlpbkp</a></CODE><DD>
wolffd@0 381 Backpropagate gradient of error function for 2-layer network.
wolffd@0 382 <DT>
wolffd@0 383 <CODE><a href="mlpderiv.htm">mlpderiv</a></CODE><DD>
wolffd@0 384 Evaluate derivatives of network outputs with respect to weights.
wolffd@0 385 <DT>
wolffd@0 386 <CODE><a href="mlperr.htm">mlperr</a></CODE><DD>
wolffd@0 387 Evaluate error function for 2-layer network.
wolffd@0 388 <DT>
wolffd@0 389 <CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE><DD>
wolffd@0 390 Forward propagation with evidence for MLP
wolffd@0 391 <DT>
wolffd@0 392 <CODE><a href="mlpfwd.htm">mlpfwd</a></CODE><DD>
wolffd@0 393 Forward propagation through 2-layer network.
wolffd@0 394 <DT>
wolffd@0 395 <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><DD>
wolffd@0 396 Evaluate gradient of error function for 2-layer network.
wolffd@0 397 <DT>
wolffd@0 398 <CODE><a href="mlphdotv.htm">mlphdotv</a></CODE><DD>
wolffd@0 399 Evaluate the product of the data Hessian with a vector.
wolffd@0 400 <DT>
wolffd@0 401 <CODE><a href="mlphess.htm">mlphess</a></CODE><DD>
wolffd@0 402 Evaluate the Hessian matrix for a multi-layer perceptron network.
wolffd@0 403 <DT>
wolffd@0 404 <CODE><a href="mlphint.htm">mlphint</a></CODE><DD>
wolffd@0 405 Plot Hinton diagram for 2-layer feed-forward network.
wolffd@0 406 <DT>
wolffd@0 407 <CODE><a href="mlpinit.htm">mlpinit</a></CODE><DD>
wolffd@0 408 Initialise the weights in a 2-layer feedforward network.
wolffd@0 409 <DT>
wolffd@0 410 <CODE><a href="mlppak.htm">mlppak</a></CODE><DD>
wolffd@0 411 Combines weights and biases into one weights vector.
wolffd@0 412 <DT>
wolffd@0 413 <CODE><a href="mlpprior.htm">mlpprior</a></CODE><DD>
wolffd@0 414 Create Gaussian prior for mlp.
wolffd@0 415 <DT>
wolffd@0 416 <CODE><a href="mlptrain.htm">mlptrain</a></CODE><DD>
wolffd@0 417 Utility to train an MLP network for demtrain
wolffd@0 418 <DT>
wolffd@0 419 <CODE><a href="mlpunpak.htm">mlpunpak</a></CODE><DD>
wolffd@0 420 Separates weights vector into weight and bias matrices.
wolffd@0 421 <DT>
wolffd@0 422 <CODE><a href="netderiv.htm">netderiv</a></CODE><DD>
wolffd@0 423 Evaluate derivatives of network outputs by weights generically.
wolffd@0 424 <DT>
wolffd@0 425 <CODE><a href="neterr.htm">neterr</a></CODE><DD>
wolffd@0 426 Evaluate network error function for generic optimizers
wolffd@0 427 <DT>
wolffd@0 428 <CODE><a href="netevfwd.htm">netevfwd</a></CODE><DD>
wolffd@0 429 Generic forward propagation with evidence for network
wolffd@0 430 <DT>
wolffd@0 431 <CODE><a href="netgrad.htm">netgrad</a></CODE><DD>
wolffd@0 432 Evaluate network error gradient for generic optimizers
wolffd@0 433 <DT>
wolffd@0 434 <CODE><a href="nethess.htm">nethess</a></CODE><DD>
wolffd@0 435 Evaluate network Hessian
wolffd@0 436 <DT>
wolffd@0 437 <CODE><a href="netinit.htm">netinit</a></CODE><DD>
wolffd@0 438 Initialise the weights in a network.
wolffd@0 439 <DT>
wolffd@0 440 <CODE><a href="netopt.htm">netopt</a></CODE><DD>
wolffd@0 441 Optimize the weights in a network model.
wolffd@0 442 <DT>
wolffd@0 443 <CODE><a href="netpak.htm">netpak</a></CODE><DD>
wolffd@0 444 Combines weights and biases into one weights vector.
wolffd@0 445 <DT>
wolffd@0 446 <CODE><a href="netunpak.htm">netunpak</a></CODE><DD>
wolffd@0 447 Separates weights vector into weight and bias matrices.
wolffd@0 448 <DT>
wolffd@0 449 <CODE><a href="olgd.htm">olgd</a></CODE><DD>
wolffd@0 450 On-line gradient descent optimization.
wolffd@0 451 <DT>
wolffd@0 452 <CODE><a href="pca.htm">pca</a></CODE><DD>
wolffd@0 453 Principal Components Analysis
wolffd@0 454 <DT>
wolffd@0 455 <CODE><a href="plotmat.htm">plotmat</a></CODE><DD>
wolffd@0 456 Display a matrix.
wolffd@0 457 <DT>
wolffd@0 458 <CODE><a href="ppca.htm">ppca</a></CODE><DD>
wolffd@0 459 Probabilistic Principal Components Analysis
wolffd@0 460 <DT>
wolffd@0 461 <CODE><a href="quasinew.htm">quasinew</a></CODE><DD>
wolffd@0 462 Quasi-Newton optimization.
wolffd@0 463 <DT>
wolffd@0 464 <CODE><a href="rbf.htm">rbf</a></CODE><DD>
wolffd@0 465 Creates an RBF network with specified architecture
wolffd@0 466 <DT>
wolffd@0 467 <CODE><a href="rbfbkp.htm">rbfbkp</a></CODE><DD>
wolffd@0 468 Backpropagate gradient of error function for RBF network.
wolffd@0 469 <DT>
wolffd@0 470 <CODE><a href="rbfderiv.htm">rbfderiv</a></CODE><DD>
wolffd@0 471 Evaluate derivatives of RBF network outputs with respect to weights.
wolffd@0 472 <DT>
wolffd@0 473 <CODE><a href="rbferr.htm">rbferr</a></CODE><DD>
wolffd@0 474 Evaluate error function for RBF network.
wolffd@0 475 <DT>
wolffd@0 476 <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE><DD>
wolffd@0 477 Forward propagation with evidence for RBF
wolffd@0 478 <DT>
wolffd@0 479 <CODE><a href="rbffwd.htm">rbffwd</a></CODE><DD>
wolffd@0 480 Forward propagation through RBF network with linear outputs.
wolffd@0 481 <DT>
wolffd@0 482 <CODE><a href="rbfgrad.htm">rbfgrad</a></CODE><DD>
wolffd@0 483 Evaluate gradient of error function for RBF network.
wolffd@0 484 <DT>
wolffd@0 485 <CODE><a href="rbfhess.htm">rbfhess</a></CODE><DD>
wolffd@0 486 Evaluate the Hessian matrix for RBF network.
wolffd@0 487 <DT>
wolffd@0 488 <CODE><a href="rbfjacob.htm">rbfjacob</a></CODE><DD>
wolffd@0 489 Evaluate derivatives of RBF network outputs with respect to inputs.
wolffd@0 490 <DT>
wolffd@0 491 <CODE><a href="rbfpak.htm">rbfpak</a></CODE><DD>
wolffd@0 492 Combines all the parameters in an RBF network into one weights vector.
wolffd@0 493 <DT>
wolffd@0 494 <CODE><a href="rbfprior.htm">rbfprior</a></CODE><DD>
wolffd@0 495 Create Gaussian prior and output layer mask for RBF.
wolffd@0 496 <DT>
wolffd@0 497 <CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE><DD>
wolffd@0 498 Set basis functions of RBF from data.
wolffd@0 499 <DT>
wolffd@0 500 <CODE><a href="rbfsetfw.htm">rbfsetfw</a></CODE><DD>
wolffd@0 501 Set basis function widths of RBF.
wolffd@0 502 <DT>
wolffd@0 503 <CODE><a href="rbftrain.htm">rbftrain</a></CODE><DD>
wolffd@0 504 Two stage training of RBF network.
wolffd@0 505 <DT>
wolffd@0 506 <CODE><a href="rbfunpak.htm">rbfunpak</a></CODE><DD>
wolffd@0 507 Separates a vector of RBF weights into its components.
wolffd@0 508 <DT>
wolffd@0 509 <CODE><a href="rosegrad.htm">rosegrad</a></CODE><DD>
wolffd@0 510 Calculate gradient of Rosenbrock's function.
wolffd@0 511 <DT>
wolffd@0 512 <CODE><a href="rosen.htm">rosen</a></CODE><DD>
wolffd@0 513 Calculate Rosenbrock's function.
wolffd@0 514 <DT>
wolffd@0 515 <CODE><a href="scg.htm">scg</a></CODE><DD>
wolffd@0 516 Scaled conjugate gradient optimization.
wolffd@0 517 <DT>
wolffd@0 518 <CODE><a href="som.htm">som</a></CODE><DD>
wolffd@0 519 Creates a Self-Organising Map.
wolffd@0 520 <DT>
wolffd@0 521 <CODE><a href="somfwd.htm">somfwd</a></CODE><DD>
wolffd@0 522 Forward propagation through a Self-Organising Map.
wolffd@0 523 <DT>
wolffd@0 524 <CODE><a href="sompak.htm">sompak</a></CODE><DD>
wolffd@0 525 Combines node weights into one weights matrix.
wolffd@0 526 <DT>
wolffd@0 527 <CODE><a href="somtrain.htm">somtrain</a></CODE><DD>
wolffd@0 528 Kohonen training algorithm for SOM.
wolffd@0 529 <DT>
wolffd@0 530 <CODE><a href="somunpak.htm">somunpak</a></CODE><DD>
wolffd@0 531 Replaces node weights in SOM.
wolffd@0 532 </DL>
wolffd@0 533
wolffd@0 534 <hr>
wolffd@0 535 <p>Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
wolffd@0 536 </body>
wolffd@0 537 </html>