wolffd@0
|
1 <html>
|
wolffd@0
|
2 <head>
|
wolffd@0
|
3 <title>
|
wolffd@0
|
4 NETLAB Reference Documentation
|
wolffd@0
|
5 </title>
|
wolffd@0
|
6 </head>
|
wolffd@0
|
7 <body>
|
wolffd@0
|
8 <H1> NETLAB Online Reference Documentation </H1>
|
wolffd@0
|
9 Welcome to the NETLAB online reference documentation.
|
wolffd@0
|
10 The NETLAB simulation software is designed to provide all the tools necessary
|
wolffd@0
|
11 for principled and theoretically well founded application development. The
|
wolffd@0
|
12 NETLAB library is based on the approach and techniques described in <I>Neural
|
wolffd@0
|
13 Networks for Pattern Recognition </I>(Bishop, 1995). The library includes software
|
wolffd@0
|
14 implementations of a wide range of data analysis techniques, many of which are
|
wolffd@0
|
15 not widely available, and are rarely, if ever, included in standard neural
|
wolffd@0
|
16 network simulation packages.
|
wolffd@0
|
17 <p>The online reference documentation provides direct hypertext links to specific Netlab function descriptions.
|
wolffd@0
|
18 <p>If you have any comments or problems to report, please contact Ian Nabney (<a href="mailto:i.t.nabney@aston.ac.uk"><tt>i.t.nabney@aston.ac.uk</tt></a>) or Christopher Bishop (<a href="mailto:c.m.bishop@aston.ac.uk"><tt>c.m.bishop@aston.ac.uk</tt></a>).<H1> Index
|
wolffd@0
|
19 </H1>
|
wolffd@0
|
20 An alphabetic list of functions in Netlab.<p>
|
wolffd@0
|
21 <DL>
|
wolffd@0
|
22 <DT>
|
wolffd@0
|
23 <CODE><a href="conffig.htm">conffig</a></CODE><DD>
|
wolffd@0
|
24 Display a confusion matrix.
|
wolffd@0
|
25 <DT>
|
wolffd@0
|
26 <CODE><a href="confmat.htm">confmat</a></CODE><DD>
|
wolffd@0
|
27 Compute a confusion matrix.
|
wolffd@0
|
28 <DT>
|
wolffd@0
|
29 <CODE><a href="conjgrad.htm">conjgrad</a></CODE><DD>
|
wolffd@0
|
30 Conjugate gradients optimization.
|
wolffd@0
|
31 <DT>
|
wolffd@0
|
32 <CODE><a href="consist.htm">consist</a></CODE><DD>
|
wolffd@0
|
33 Check that arguments are consistent.
|
wolffd@0
|
34 <DT>
|
wolffd@0
|
35 <CODE><a href="convertoldnet.htm">convertoldnet</a></CODE><DD>
|
wolffd@0
|
36 Convert pre-2.3 release MLP and MDN nets to new format
|
wolffd@0
|
37 <DT>
|
wolffd@0
|
38 <CODE><a href="datread.htm">datread</a></CODE><DD>
|
wolffd@0
|
39 Read data from an ascii file.
|
wolffd@0
|
40 <DT>
|
wolffd@0
|
41 <CODE><a href="datwrite.htm">datwrite</a></CODE><DD>
|
wolffd@0
|
42 Write data to ascii file.
|
wolffd@0
|
43 <DT>
|
wolffd@0
|
44 <CODE><a href="dem2ddat.htm">dem2ddat</a></CODE><DD>
|
wolffd@0
|
45 Generates two dimensional data for demos.
|
wolffd@0
|
46 <DT>
|
wolffd@0
|
47 <CODE><a href="demard.htm">demard</a></CODE><DD>
|
wolffd@0
|
48 Automatic relevance determination using the MLP.
|
wolffd@0
|
49 <DT>
|
wolffd@0
|
50 <CODE><a href="demev1.htm">demev1</a></CODE><DD>
|
wolffd@0
|
51 Demonstrate Bayesian regression for the MLP.
|
wolffd@0
|
52 <DT>
|
wolffd@0
|
53 <CODE><a href="demev2.htm">demev2</a></CODE><DD>
|
wolffd@0
|
54 Demonstrate Bayesian classification for the MLP.
|
wolffd@0
|
55 <DT>
|
wolffd@0
|
56 <CODE><a href="demev3.htm">demev3</a></CODE><DD>
|
wolffd@0
|
57 Demonstrate Bayesian regression for the RBF.
|
wolffd@0
|
58 <DT>
|
wolffd@0
|
59 <CODE><a href="demgauss.htm">demgauss</a></CODE><DD>
|
wolffd@0
|
60 Demonstrate sampling from Gaussian distributions.
|
wolffd@0
|
61 <DT>
|
wolffd@0
|
62 <CODE><a href="demglm1.htm">demglm1</a></CODE><DD>
|
wolffd@0
|
63 Demonstrate simple classification using a generalized linear model.
|
wolffd@0
|
64 <DT>
|
wolffd@0
|
65 <CODE><a href="demglm2.htm">demglm2</a></CODE><DD>
|
wolffd@0
|
66 Demonstrate simple classification using a generalized linear model.
|
wolffd@0
|
67 <DT>
|
wolffd@0
|
68 <CODE><a href="demgmm1.htm">demgmm1</a></CODE><DD>
|
wolffd@0
|
69 Demonstrate density modelling with a Gaussian mixture model.
|
wolffd@0
|
70 <DT>
|
wolffd@0
|
71 <CODE><a href="demgmm3.htm">demgmm3</a></CODE><DD>
|
wolffd@0
|
72 Demonstrate density modelling with a Gaussian mixture model.
|
wolffd@0
|
73 <DT>
|
wolffd@0
|
74 <CODE><a href="demgmm4.htm">demgmm4</a></CODE><DD>
|
wolffd@0
|
75 Demonstrate density modelling with a Gaussian mixture model.
|
wolffd@0
|
76 <DT>
|
wolffd@0
|
77 <CODE><a href="demgmm5.htm">demgmm5</a></CODE><DD>
|
wolffd@0
|
78 Demonstrate density modelling with a PPCA mixture model.
|
wolffd@0
|
79 <DT>
|
wolffd@0
|
80 <CODE><a href="demgp.htm">demgp</a></CODE><DD>
|
wolffd@0
|
81 Demonstrate simple regression using a Gaussian Process.
|
wolffd@0
|
82 <DT>
|
wolffd@0
|
83 <CODE><a href="demgpard.htm">demgpard</a></CODE><DD>
|
wolffd@0
|
84 Demonstrate ARD using a Gaussian Process.
|
wolffd@0
|
85 <DT>
|
wolffd@0
|
86 <CODE><a href="demgpot.htm">demgpot</a></CODE><DD>
|
wolffd@0
|
87 Computes the gradient of the negative log likelihood for a mixture model.
|
wolffd@0
|
88 <DT>
|
wolffd@0
|
89 <CODE><a href="demgtm1.htm">demgtm1</a></CODE><DD>
|
wolffd@0
|
90 Demonstrate EM for GTM.
|
wolffd@0
|
91 <DT>
|
wolffd@0
|
92 <CODE><a href="demgtm2.htm">demgtm2</a></CODE><DD>
|
wolffd@0
|
93 Demonstrate GTM for visualisation.
|
wolffd@0
|
94 <DT>
|
wolffd@0
|
95 <CODE><a href="demhint.htm">demhint</a></CODE><DD>
|
wolffd@0
|
96 Demonstration of Hinton diagram for 2-layer feed-forward network.
|
wolffd@0
|
97 <DT>
|
wolffd@0
|
98 <CODE><a href="demhmc1.htm">demhmc1</a></CODE><DD>
|
wolffd@0
|
99 Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians.
|
wolffd@0
|
100 <DT>
|
wolffd@0
|
101 <CODE><a href="demhmc2.htm">demhmc2</a></CODE><DD>
|
wolffd@0
|
102 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.
|
wolffd@0
|
103 <DT>
|
wolffd@0
|
104 <CODE><a href="demhmc3.htm">demhmc3</a></CODE><DD>
|
wolffd@0
|
105 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.
|
wolffd@0
|
106 <DT>
|
wolffd@0
|
107 <CODE><a href="demkmean.htm">demkmean</a></CODE><DD>
|
wolffd@0
|
108 Demonstrate simple clustering model trained with K-means.
|
wolffd@0
|
109 <DT>
|
wolffd@0
|
110 <CODE><a href="demknn1.htm">demknn1</a></CODE><DD>
|
wolffd@0
|
111 Demonstrate nearest neighbour classifier.
|
wolffd@0
|
112 <DT>
|
wolffd@0
|
113 <CODE><a href="demmdn1.htm">demmdn1</a></CODE><DD>
|
wolffd@0
|
114 Demonstrate fitting a multi-valued function using a Mixture Density Network.
|
wolffd@0
|
115 <DT>
|
wolffd@0
|
116 <CODE><a href="demmet1.htm">demmet1</a></CODE><DD>
|
wolffd@0
|
117 Demonstrate Markov Chain Monte Carlo sampling on a Gaussian.
|
wolffd@0
|
118 <DT>
|
wolffd@0
|
119 <CODE><a href="demmlp1.htm">demmlp1</a></CODE><DD>
|
wolffd@0
|
120 Demonstrate simple regression using a multi-layer perceptron
|
wolffd@0
|
121 <DT>
|
wolffd@0
|
122 <CODE><a href="demmlp2.htm">demmlp2</a></CODE><DD>
|
wolffd@0
|
123 Demonstrate simple classification using a multi-layer perceptron
|
wolffd@0
|
124 <DT>
|
wolffd@0
|
125 <CODE><a href="demnlab.htm">demnlab</a></CODE><DD>
|
wolffd@0
|
126 A front-end Graphical User Interface to the demos
|
wolffd@0
|
127 <DT>
|
wolffd@0
|
128 <CODE><a href="demns1.htm">demns1</a></CODE><DD>
|
wolffd@0
|
129 Demonstrate Neuroscale for visualisation.
|
wolffd@0
|
130 <DT>
|
wolffd@0
|
131 <CODE><a href="demolgd1.htm">demolgd1</a></CODE><DD>
|
wolffd@0
|
132 Demonstrate simple MLP optimisation with on-line gradient descent
|
wolffd@0
|
133 <DT>
|
wolffd@0
|
134 <CODE><a href="demopt1.htm">demopt1</a></CODE><DD>
|
wolffd@0
|
135 Demonstrate different optimisers on Rosenbrock's function.
|
wolffd@0
|
136 <DT>
|
wolffd@0
|
137 <CODE><a href="dempot.htm">dempot</a></CODE><DD>
|
wolffd@0
|
138 Computes the negative log likelihood for a mixture model.
|
wolffd@0
|
139 <DT>
|
wolffd@0
|
140 <CODE><a href="demprgp.htm">demprgp</a></CODE><DD>
|
wolffd@0
|
141 Demonstrate sampling from a Gaussian Process prior.
|
wolffd@0
|
142 <DT>
|
wolffd@0
|
143 <CODE><a href="demprior.htm">demprior</a></CODE><DD>
|
wolffd@0
|
144 Demonstrate sampling from a multi-parameter Gaussian prior.
|
wolffd@0
|
145 <DT>
|
wolffd@0
|
146 <CODE><a href="demrbf1.htm">demrbf1</a></CODE><DD>
|
wolffd@0
|
147 Demonstrate simple regression using a radial basis function network.
|
wolffd@0
|
148 <DT>
|
wolffd@0
|
149 <CODE><a href="demsom1.htm">demsom1</a></CODE><DD>
|
wolffd@0
|
150 Demonstrate SOM for visualisation.
|
wolffd@0
|
151 <DT>
|
wolffd@0
|
152 <CODE><a href="demtrain.htm">demtrain</a></CODE><DD>
|
wolffd@0
|
153 Demonstrate training of MLP network.
|
wolffd@0
|
154 <DT>
|
wolffd@0
|
155 <CODE><a href="dist2.htm">dist2</a></CODE><DD>
|
wolffd@0
|
156 Calculates squared distance between two sets of points.
|
wolffd@0
|
157 <DT>
|
wolffd@0
|
158 <CODE><a href="eigdec.htm">eigdec</a></CODE><DD>
|
wolffd@0
|
159 Sorted eigendecomposition
|
wolffd@0
|
160 <DT>
|
wolffd@0
|
161 <CODE><a href="errbayes.htm">errbayes</a></CODE><DD>
|
wolffd@0
|
162 Evaluate Bayesian error function for network.
|
wolffd@0
|
163 <DT>
|
wolffd@0
|
164 <CODE><a href="evidence.htm">evidence</a></CODE><DD>
|
wolffd@0
|
165 Re-estimate hyperparameters using evidence approximation.
|
wolffd@0
|
166 <DT>
|
wolffd@0
|
167 <CODE><a href="fevbayes.htm">fevbayes</a></CODE><DD>
|
wolffd@0
|
168 Evaluate Bayesian regularisation for network forward propagation.
|
wolffd@0
|
169 <DT>
|
wolffd@0
|
170 <CODE><a href="gauss.htm">gauss</a></CODE><DD>
|
wolffd@0
|
171 Evaluate a Gaussian distribution.
|
wolffd@0
|
172 <DT>
|
wolffd@0
|
173 <CODE><a href="gbayes.htm">gbayes</a></CODE><DD>
|
wolffd@0
|
174 Evaluate gradient of Bayesian error function for network.
|
wolffd@0
|
175 <DT>
|
wolffd@0
|
176 <CODE><a href="glm.htm">glm</a></CODE><DD>
|
wolffd@0
|
177 Create a generalized linear model.
|
wolffd@0
|
178 <DT>
|
wolffd@0
|
179 <CODE><a href="glmderiv.htm">glmderiv</a></CODE><DD>
|
wolffd@0
|
180 Evaluate derivatives of GLM outputs with respect to weights.
|
wolffd@0
|
181 <DT>
|
wolffd@0
|
182 <CODE><a href="glmerr.htm">glmerr</a></CODE><DD>
|
wolffd@0
|
183 Evaluate error function for generalized linear model.
|
wolffd@0
|
184 <DT>
|
wolffd@0
|
185 <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE><DD>
|
wolffd@0
|
186 Forward propagation with evidence for GLM
|
wolffd@0
|
187 <DT>
|
wolffd@0
|
188 <CODE><a href="glmfwd.htm">glmfwd</a></CODE><DD>
|
wolffd@0
|
189 Forward propagation through generalized linear model.
|
wolffd@0
|
190 <DT>
|
wolffd@0
|
191 <CODE><a href="glmgrad.htm">glmgrad</a></CODE><DD>
|
wolffd@0
|
192 Evaluate gradient of error function for generalized linear model.
|
wolffd@0
|
193 <DT>
|
wolffd@0
|
194 <CODE><a href="glmhess.htm">glmhess</a></CODE><DD>
|
wolffd@0
|
195 Evaluate the Hessian matrix for a generalised linear model.
|
wolffd@0
|
196 <DT>
|
wolffd@0
|
197 <CODE><a href="glminit.htm">glminit</a></CODE><DD>
|
wolffd@0
|
198 Initialise the weights in a generalized linear model.
|
wolffd@0
|
199 <DT>
|
wolffd@0
|
200 <CODE><a href="glmpak.htm">glmpak</a></CODE><DD>
|
wolffd@0
|
201 Combines weights and biases into one weights vector.
|
wolffd@0
|
202 <DT>
|
wolffd@0
|
203 <CODE><a href="glmtrain.htm">glmtrain</a></CODE><DD>
|
wolffd@0
|
204 Specialised training of generalized linear model
|
wolffd@0
|
205 <DT>
|
wolffd@0
|
206 <CODE><a href="glmunpak.htm">glmunpak</a></CODE><DD>
|
wolffd@0
|
207 Separates weights vector into weight and bias matrices.
|
wolffd@0
|
208 <DT>
|
wolffd@0
|
209 <CODE><a href="gmm.htm">gmm</a></CODE><DD>
|
wolffd@0
|
210 Creates a Gaussian mixture model with specified architecture.
|
wolffd@0
|
211 <DT>
|
wolffd@0
|
212 <CODE><a href="gmmactiv.htm">gmmactiv</a></CODE><DD>
|
wolffd@0
|
213 Computes the activations of a Gaussian mixture model.
|
wolffd@0
|
214 <DT>
|
wolffd@0
|
215 <CODE><a href="gmmem.htm">gmmem</a></CODE><DD>
|
wolffd@0
|
216 EM algorithm for Gaussian mixture model.
|
wolffd@0
|
217 <DT>
|
wolffd@0
|
218 <CODE><a href="gmminit.htm">gmminit</a></CODE><DD>
|
wolffd@0
|
219 Initialises Gaussian mixture model from data
|
wolffd@0
|
220 <DT>
|
wolffd@0
|
221 <CODE><a href="gmmpak.htm">gmmpak</a></CODE><DD>
|
wolffd@0
|
222 Combines all the parameters in a Gaussian mixture model into one vector.
|
wolffd@0
|
223 <DT>
|
wolffd@0
|
224 <CODE><a href="gmmpost.htm">gmmpost</a></CODE><DD>
|
wolffd@0
|
225 Computes the class posterior probabilities of a Gaussian mixture model.
|
wolffd@0
|
226 <DT>
|
wolffd@0
|
227 <CODE><a href="gmmprob.htm">gmmprob</a></CODE><DD>
|
wolffd@0
|
228 Computes the data probability for a Gaussian mixture model.
|
wolffd@0
|
229 <DT>
|
wolffd@0
|
230 <CODE><a href="gmmsamp.htm">gmmsamp</a></CODE><DD>
|
wolffd@0
|
231 Sample from a Gaussian mixture distribution.
|
wolffd@0
|
232 <DT>
|
wolffd@0
|
233 <CODE><a href="gmmunpak.htm">gmmunpak</a></CODE><DD>
|
wolffd@0
|
234 Separates a vector of Gaussian mixture model parameters into its components.
|
wolffd@0
|
235 <DT>
|
wolffd@0
|
236 <CODE><a href="gp.htm">gp</a></CODE><DD>
|
wolffd@0
|
237 Create a Gaussian Process.
|
wolffd@0
|
238 <DT>
|
wolffd@0
|
239 <CODE><a href="gpcovar.htm">gpcovar</a></CODE><DD>
|
wolffd@0
|
240 Calculate the covariance for a Gaussian Process.
|
wolffd@0
|
241 <DT>
|
wolffd@0
|
242 <CODE><a href="gpcovarf.htm">gpcovarf</a></CODE><DD>
|
wolffd@0
|
243 Calculate the covariance function for a Gaussian Process.
|
wolffd@0
|
244 <DT>
|
wolffd@0
|
245 <CODE><a href="gpcovarp.htm">gpcovarp</a></CODE><DD>
|
wolffd@0
|
246 Calculate the prior covariance for a Gaussian Process.
|
wolffd@0
|
247 <DT>
|
wolffd@0
|
248 <CODE><a href="gperr.htm">gperr</a></CODE><DD>
|
wolffd@0
|
249 Evaluate error function for Gaussian Process.
|
wolffd@0
|
250 <DT>
|
wolffd@0
|
251 <CODE><a href="gpfwd.htm">gpfwd</a></CODE><DD>
|
wolffd@0
|
252 Forward propagation through Gaussian Process.
|
wolffd@0
|
253 <DT>
|
wolffd@0
|
254 <CODE><a href="gpgrad.htm">gpgrad</a></CODE><DD>
|
wolffd@0
|
255 Evaluate error gradient for Gaussian Process.
|
wolffd@0
|
256 <DT>
|
wolffd@0
|
257 <CODE><a href="gpinit.htm">gpinit</a></CODE><DD>
|
wolffd@0
|
258 Initialise Gaussian Process model.
|
wolffd@0
|
259 <DT>
|
wolffd@0
|
260 <CODE><a href="gppak.htm">gppak</a></CODE><DD>
|
wolffd@0
|
261 Combines GP hyperparameters into one vector.
|
wolffd@0
|
262 <DT>
|
wolffd@0
|
263 <CODE><a href="gpunpak.htm">gpunpak</a></CODE><DD>
|
wolffd@0
|
264 Separates hyperparameter vector into components.
|
wolffd@0
|
265 <DT>
|
wolffd@0
|
266 <CODE><a href="gradchek.htm">gradchek</a></CODE><DD>
|
wolffd@0
|
267 Checks a user-defined gradient function using finite differences.
|
wolffd@0
|
268 <DT>
|
wolffd@0
|
269 <CODE><a href="graddesc.htm">graddesc</a></CODE><DD>
|
wolffd@0
|
270 Gradient descent optimization.
|
wolffd@0
|
271 <DT>
|
wolffd@0
|
272 <CODE><a href="gsamp.htm">gsamp</a></CODE><DD>
|
wolffd@0
|
273 Sample from a Gaussian distribution.
|
wolffd@0
|
274 <DT>
|
wolffd@0
|
275 <CODE><a href="gtm.htm">gtm</a></CODE><DD>
|
wolffd@0
|
276 Create a Generative Topographic Map.
|
wolffd@0
|
277 <DT>
|
wolffd@0
|
278 <CODE><a href="gtmem.htm">gtmem</a></CODE><DD>
|
wolffd@0
|
279 EM algorithm for Generative Topographic Mapping.
|
wolffd@0
|
280 <DT>
|
wolffd@0
|
281 <CODE><a href="gtmfwd.htm">gtmfwd</a></CODE><DD>
|
wolffd@0
|
282 Forward propagation through GTM.
|
wolffd@0
|
283 <DT>
|
wolffd@0
|
284 <CODE><a href="gtminit.htm">gtminit</a></CODE><DD>
|
wolffd@0
|
285 Initialise the weights and latent sample in a GTM.
|
wolffd@0
|
286 <DT>
|
wolffd@0
|
287 <CODE><a href="gtmlmean.htm">gtmlmean</a></CODE><DD>
|
wolffd@0
|
288 Mean responsibility for data in a GTM.
|
wolffd@0
|
289 <DT>
|
wolffd@0
|
290 <CODE><a href="gtmlmode.htm">gtmlmode</a></CODE><DD>
|
wolffd@0
|
291 Mode responsibility for data in a GTM.
|
wolffd@0
|
292 <DT>
|
wolffd@0
|
293 <CODE><a href="gtmmag.htm">gtmmag</a></CODE><DD>
|
wolffd@0
|
294 Magnification factors for a GTM
|
wolffd@0
|
295 <DT>
|
wolffd@0
|
296 <CODE><a href="gtmpost.htm">gtmpost</a></CODE><DD>
|
wolffd@0
|
297 Latent space responsibility for data in a GTM.
|
wolffd@0
|
298 <DT>
|
wolffd@0
|
299 <CODE><a href="gtmprob.htm">gtmprob</a></CODE><DD>
|
wolffd@0
|
300 Probability for data under a GTM.
|
wolffd@0
|
301 <DT>
|
wolffd@0
|
302 <CODE><a href="hbayes.htm">hbayes</a></CODE><DD>
|
wolffd@0
|
303 Evaluate Hessian of Bayesian error function for network.
|
wolffd@0
|
304 <DT>
|
wolffd@0
|
305 <CODE><a href="hesschek.htm">hesschek</a></CODE><DD>
|
wolffd@0
|
306 Use central differences to confirm correct evaluation of Hessian matrix.
|
wolffd@0
|
307 <DT>
|
wolffd@0
|
308 <CODE><a href="hintmat.htm">hintmat</a></CODE><DD>
|
wolffd@0
|
309 Evaluates the coordinates of the patches for a Hinton diagram.
|
wolffd@0
|
310 <DT>
|
wolffd@0
|
311 <CODE><a href="hinton.htm">hinton</a></CODE><DD>
|
wolffd@0
|
312 Plot Hinton diagram for a weight matrix.
|
wolffd@0
|
313 <DT>
|
wolffd@0
|
314 <CODE><a href="histp.htm">histp</a></CODE><DD>
|
wolffd@0
|
315 Histogram estimate of 1-dimensional probability distribution.
|
wolffd@0
|
316 <DT>
|
wolffd@0
|
317 <CODE><a href="hmc.htm">hmc</a></CODE><DD>
|
wolffd@0
|
318 Hybrid Monte Carlo sampling.
|
wolffd@0
|
319 <DT>
|
wolffd@0
|
320 <CODE><a href="kmeans.htm">kmeans</a></CODE><DD>
|
wolffd@0
|
321 Trains a k means cluster model.
|
wolffd@0
|
322 <DT>
|
wolffd@0
|
323 <CODE><a href="knn.htm">knn</a></CODE><DD>
|
wolffd@0
|
324 Creates a K-nearest-neighbour classifier.
|
wolffd@0
|
325 <DT>
|
wolffd@0
|
326 <CODE><a href="knnfwd.htm">knnfwd</a></CODE><DD>
|
wolffd@0
|
327 Forward propagation through a K-nearest-neighbour classifier.
|
wolffd@0
|
328 <DT>
|
wolffd@0
|
329 <CODE><a href="linef.htm">linef</a></CODE><DD>
|
wolffd@0
|
330 Calculate function value along a line.
|
wolffd@0
|
331 <DT>
|
wolffd@0
|
332 <CODE><a href="linemin.htm">linemin</a></CODE><DD>
|
wolffd@0
|
333 One dimensional minimization.
|
wolffd@0
|
334 <DT>
|
wolffd@0
|
335 <CODE><a href="maxitmess.htm">maxitmess</a></CODE><DD>
|
wolffd@0
|
336 Create a standard error message when training reaches max. iterations.
|
wolffd@0
|
337 <DT>
|
wolffd@0
|
338 <CODE><a href="mdn.htm">mdn</a></CODE><DD>
|
wolffd@0
|
339 Creates a Mixture Density Network with specified architecture.
|
wolffd@0
|
340 <DT>
|
wolffd@0
|
341 <CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE><DD>
|
wolffd@0
|
342 Converts an MDN mixture data structure to array of GMMs.
|
wolffd@0
|
343 <DT>
|
wolffd@0
|
344 <CODE><a href="mdndist2.htm">mdndist2</a></CODE><DD>
|
wolffd@0
|
345 Calculates squared distance between centres of Gaussian kernels and data
|
wolffd@0
|
346 <DT>
|
wolffd@0
|
347 <CODE><a href="mdnerr.htm">mdnerr</a></CODE><DD>
|
wolffd@0
|
348 Evaluate error function for Mixture Density Network.
|
wolffd@0
|
349 <DT>
|
wolffd@0
|
350 <CODE><a href="mdnfwd.htm">mdnfwd</a></CODE><DD>
|
wolffd@0
|
351 Forward propagation through Mixture Density Network.
|
wolffd@0
|
352 <DT>
|
wolffd@0
|
353 <CODE><a href="mdngrad.htm">mdngrad</a></CODE><DD>
|
wolffd@0
|
354 Evaluate gradient of error function for Mixture Density Network.
|
wolffd@0
|
355 <DT>
|
wolffd@0
|
356 <CODE><a href="mdninit.htm">mdninit</a></CODE><DD>
|
wolffd@0
|
357 Initialise the weights in a Mixture Density Network.
|
wolffd@0
|
358 <DT>
|
wolffd@0
|
359 <CODE><a href="mdnpak.htm">mdnpak</a></CODE><DD>
|
wolffd@0
|
360 Combines weights and biases into one weights vector.
|
wolffd@0
|
361 <DT>
|
wolffd@0
|
362 <CODE><a href="mdnpost.htm">mdnpost</a></CODE><DD>
|
wolffd@0
|
363 Computes the posterior probability for each MDN mixture component.
|
wolffd@0
|
364 <DT>
|
wolffd@0
|
365 <CODE><a href="mdnprob.htm">mdnprob</a></CODE><DD>
|
wolffd@0
|
366 Computes the data probability likelihood for an MDN mixture structure.
|
wolffd@0
|
367 <DT>
|
wolffd@0
|
368 <CODE><a href="mdnunpak.htm">mdnunpak</a></CODE><DD>
|
wolffd@0
|
369 Separates weights vector into weight and bias matrices.
|
wolffd@0
|
370 <DT>
|
wolffd@0
|
371 <CODE><a href="metrop.htm">metrop</a></CODE><DD>
|
wolffd@0
|
372 Markov Chain Monte Carlo sampling with Metropolis algorithm.
|
wolffd@0
|
373 <DT>
|
wolffd@0
|
374 <CODE><a href="minbrack.htm">minbrack</a></CODE><DD>
|
wolffd@0
|
375 Bracket a minimum of a function of one variable.
|
wolffd@0
|
376 <DT>
|
wolffd@0
|
377 <CODE><a href="mlp.htm">mlp</a></CODE><DD>
|
wolffd@0
|
378 Create a 2-layer feedforward network.
|
wolffd@0
|
379 <DT>
|
wolffd@0
|
380 <CODE><a href="mlpbkp.htm">mlpbkp</a></CODE><DD>
|
wolffd@0
|
381 Backpropagate gradient of error function for 2-layer network.
|
wolffd@0
|
382 <DT>
|
wolffd@0
|
383 <CODE><a href="mlpderiv.htm">mlpderiv</a></CODE><DD>
|
wolffd@0
|
384 Evaluate derivatives of network outputs with respect to weights.
|
wolffd@0
|
385 <DT>
|
wolffd@0
|
386 <CODE><a href="mlperr.htm">mlperr</a></CODE><DD>
|
wolffd@0
|
387 Evaluate error function for 2-layer network.
|
wolffd@0
|
388 <DT>
|
wolffd@0
|
389 <CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE><DD>
|
wolffd@0
|
390 Forward propagation with evidence for MLP
|
wolffd@0
|
391 <DT>
|
wolffd@0
|
392 <CODE><a href="mlpfwd.htm">mlpfwd</a></CODE><DD>
|
wolffd@0
|
393 Forward propagation through 2-layer network.
|
wolffd@0
|
394 <DT>
|
wolffd@0
|
395 <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><DD>
|
wolffd@0
|
396 Evaluate gradient of error function for 2-layer network.
|
wolffd@0
|
397 <DT>
|
wolffd@0
|
398 <CODE><a href="mlphdotv.htm">mlphdotv</a></CODE><DD>
|
wolffd@0
|
399 Evaluate the product of the data Hessian with a vector.
|
wolffd@0
|
400 <DT>
|
wolffd@0
|
401 <CODE><a href="mlphess.htm">mlphess</a></CODE><DD>
|
wolffd@0
|
402 Evaluate the Hessian matrix for a multi-layer perceptron network.
|
wolffd@0
|
403 <DT>
|
wolffd@0
|
404 <CODE><a href="mlphint.htm">mlphint</a></CODE><DD>
|
wolffd@0
|
405 Plot Hinton diagram for 2-layer feed-forward network.
|
wolffd@0
|
406 <DT>
|
wolffd@0
|
407 <CODE><a href="mlpinit.htm">mlpinit</a></CODE><DD>
|
wolffd@0
|
408 Initialise the weights in a 2-layer feedforward network.
|
wolffd@0
|
409 <DT>
|
wolffd@0
|
410 <CODE><a href="mlppak.htm">mlppak</a></CODE><DD>
|
wolffd@0
|
411 Combines weights and biases into one weights vector.
|
wolffd@0
|
412 <DT>
|
wolffd@0
|
413 <CODE><a href="mlpprior.htm">mlpprior</a></CODE><DD>
|
wolffd@0
|
414 Create Gaussian prior for mlp.
|
wolffd@0
|
415 <DT>
|
wolffd@0
|
416 <CODE><a href="mlptrain.htm">mlptrain</a></CODE><DD>
|
wolffd@0
|
417 Utility to train an MLP network for demtrain
|
wolffd@0
|
418 <DT>
|
wolffd@0
|
419 <CODE><a href="mlpunpak.htm">mlpunpak</a></CODE><DD>
|
wolffd@0
|
420 Separates weights vector into weight and bias matrices.
|
wolffd@0
|
421 <DT>
|
wolffd@0
|
422 <CODE><a href="netderiv.htm">netderiv</a></CODE><DD>
|
wolffd@0
|
423 Evaluate derivatives of network outputs by weights generically.
|
wolffd@0
|
424 <DT>
|
wolffd@0
|
425 <CODE><a href="neterr.htm">neterr</a></CODE><DD>
|
wolffd@0
|
426 Evaluate network error function for generic optimizers
|
wolffd@0
|
427 <DT>
|
wolffd@0
|
428 <CODE><a href="netevfwd.htm">netevfwd</a></CODE><DD>
|
wolffd@0
|
429 Generic forward propagation with evidence for network
|
wolffd@0
|
430 <DT>
|
wolffd@0
|
431 <CODE><a href="netgrad.htm">netgrad</a></CODE><DD>
|
wolffd@0
|
432 Evaluate network error gradient for generic optimizers
|
wolffd@0
|
433 <DT>
|
wolffd@0
|
434 <CODE><a href="nethess.htm">nethess</a></CODE><DD>
|
wolffd@0
|
435 Evaluate network Hessian
|
wolffd@0
|
436 <DT>
|
wolffd@0
|
437 <CODE><a href="netinit.htm">netinit</a></CODE><DD>
|
wolffd@0
|
438 Initialise the weights in a network.
|
wolffd@0
|
439 <DT>
|
wolffd@0
|
440 <CODE><a href="netopt.htm">netopt</a></CODE><DD>
|
wolffd@0
|
441 Optimize the weights in a network model.
|
wolffd@0
|
442 <DT>
|
wolffd@0
|
443 <CODE><a href="netpak.htm">netpak</a></CODE><DD>
|
wolffd@0
|
444 Combines weights and biases into one weights vector.
|
wolffd@0
|
445 <DT>
|
wolffd@0
|
446 <CODE><a href="netunpak.htm">netunpak</a></CODE><DD>
|
wolffd@0
|
447 Separates weights vector into weight and bias matrices.
|
wolffd@0
|
448 <DT>
|
wolffd@0
|
449 <CODE><a href="olgd.htm">olgd</a></CODE><DD>
|
wolffd@0
|
450 On-line gradient descent optimization.
|
wolffd@0
|
451 <DT>
|
wolffd@0
|
452 <CODE><a href="pca.htm">pca</a></CODE><DD>
|
wolffd@0
|
453 Principal Components Analysis
|
wolffd@0
|
454 <DT>
|
wolffd@0
|
455 <CODE><a href="plotmat.htm">plotmat</a></CODE><DD>
|
wolffd@0
|
456 Display a matrix.
|
wolffd@0
|
457 <DT>
|
wolffd@0
|
458 <CODE><a href="ppca.htm">ppca</a></CODE><DD>
|
wolffd@0
|
459 Probabilistic Principal Components Analysis
|
wolffd@0
|
460 <DT>
|
wolffd@0
|
461 <CODE><a href="quasinew.htm">quasinew</a></CODE><DD>
|
wolffd@0
|
462 Quasi-Newton optimization.
|
wolffd@0
|
463 <DT>
|
wolffd@0
|
464 <CODE><a href="rbf.htm">rbf</a></CODE><DD>
|
wolffd@0
|
465 Creates an RBF network with specified architecture
|
wolffd@0
|
466 <DT>
|
wolffd@0
|
467 <CODE><a href="rbfbkp.htm">rbfbkp</a></CODE><DD>
|
wolffd@0
|
468 Backpropagate gradient of error function for RBF network.
|
wolffd@0
|
469 <DT>
|
wolffd@0
|
470 <CODE><a href="rbfderiv.htm">rbfderiv</a></CODE><DD>
|
wolffd@0
|
471 Evaluate derivatives of RBF network outputs with respect to weights.
|
wolffd@0
|
472 <DT>
|
wolffd@0
|
473 <CODE><a href="rbferr.htm">rbferr</a></CODE><DD>
|
wolffd@0
|
474 Evaluate error function for RBF network.
|
wolffd@0
|
475 <DT>
|
wolffd@0
|
476 <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE><DD>
|
wolffd@0
|
477 Forward propagation with evidence for RBF
|
wolffd@0
|
478 <DT>
|
wolffd@0
|
479 <CODE><a href="rbffwd.htm">rbffwd</a></CODE><DD>
|
wolffd@0
|
480 Forward propagation through RBF network with linear outputs.
|
wolffd@0
|
481 <DT>
|
wolffd@0
|
482 <CODE><a href="rbfgrad.htm">rbfgrad</a></CODE><DD>
|
wolffd@0
|
483 Evaluate gradient of error function for RBF network.
|
wolffd@0
|
484 <DT>
|
wolffd@0
|
485 <CODE><a href="rbfhess.htm">rbfhess</a></CODE><DD>
|
wolffd@0
|
486 Evaluate the Hessian matrix for RBF network.
|
wolffd@0
|
487 <DT>
|
wolffd@0
|
488 <CODE><a href="rbfjacob.htm">rbfjacob</a></CODE><DD>
|
wolffd@0
|
489 Evaluate derivatives of RBF network outputs with respect to inputs.
|
wolffd@0
|
490 <DT>
|
wolffd@0
|
491 <CODE><a href="rbfpak.htm">rbfpak</a></CODE><DD>
|
wolffd@0
|
492 Combines all the parameters in an RBF network into one weights vector.
|
wolffd@0
|
493 <DT>
|
wolffd@0
|
494 <CODE><a href="rbfprior.htm">rbfprior</a></CODE><DD>
|
wolffd@0
|
495 Create Gaussian prior and output layer mask for RBF.
|
wolffd@0
|
496 <DT>
|
wolffd@0
|
497 <CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE><DD>
|
wolffd@0
|
498 Set basis functions of RBF from data.
|
wolffd@0
|
499 <DT>
|
wolffd@0
|
500 <CODE><a href="rbfsetfw.htm">rbfsetfw</a></CODE><DD>
|
wolffd@0
|
501 Set basis function widths of RBF.
|
wolffd@0
|
502 <DT>
|
wolffd@0
|
503 <CODE><a href="rbftrain.htm">rbftrain</a></CODE><DD>
|
wolffd@0
|
504 Two stage training of RBF network.
|
wolffd@0
|
505 <DT>
|
wolffd@0
|
506 <CODE><a href="rbfunpak.htm">rbfunpak</a></CODE><DD>
|
wolffd@0
|
507 Separates a vector of RBF weights into its components.
|
wolffd@0
|
508 <DT>
|
wolffd@0
|
509 <CODE><a href="rosegrad.htm">rosegrad</a></CODE><DD>
|
wolffd@0
|
510 Calculate gradient of Rosenbrock's function.
|
wolffd@0
|
511 <DT>
|
wolffd@0
|
512 <CODE><a href="rosen.htm">rosen</a></CODE><DD>
|
wolffd@0
|
513 Calculate Rosenbrock's function.
|
wolffd@0
|
514 <DT>
|
wolffd@0
|
515 <CODE><a href="scg.htm">scg</a></CODE><DD>
|
wolffd@0
|
516 Scaled conjugate gradient optimization.
|
wolffd@0
|
517 <DT>
|
wolffd@0
|
518 <CODE><a href="som.htm">som</a></CODE><DD>
|
wolffd@0
|
519 Creates a Self-Organising Map.
|
wolffd@0
|
520 <DT>
|
wolffd@0
|
521 <CODE><a href="somfwd.htm">somfwd</a></CODE><DD>
|
wolffd@0
|
522 Forward propagation through a Self-Organising Map.
|
wolffd@0
|
523 <DT>
|
wolffd@0
|
524 <CODE><a href="sompak.htm">sompak</a></CODE><DD>
|
wolffd@0
|
525 Combines node weights into one weights matrix.
|
wolffd@0
|
526 <DT>
|
wolffd@0
|
527 <CODE><a href="somtrain.htm">somtrain</a></CODE><DD>
|
wolffd@0
|
528 Kohonen training algorithm for SOM.
|
wolffd@0
|
529 <DT>
|
wolffd@0
|
530 <CODE><a href="somunpak.htm">somunpak</a></CODE><DD>
|
wolffd@0
|
531 Replaces node weights in SOM.
|
wolffd@0
|
532 </DL>
|
wolffd@0
|
533
|
wolffd@0
|
534 <hr>
|
wolffd@0
|
535 <p>Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
|
wolffd@0
|
536 </body>
|
wolffd@0
|
537 </html> |