| wolffd@0 | 1 <html> | 
| wolffd@0 | 2 <head> | 
| wolffd@0 | 3 <title> | 
| wolffd@0 | 4 Netlab Reference Manual netopt | 
| wolffd@0 | 5 </title> | 
| wolffd@0 | 6 </head> | 
| wolffd@0 | 7 <body> | 
| wolffd@0 | 8 <H1> netopt | 
| wolffd@0 | 9 </H1> | 
| wolffd@0 | 10 <h2> | 
| wolffd@0 | 11 Purpose | 
| wolffd@0 | 12 </h2> | 
| wolffd@0 | 13 Optimize the weights in a network model. | 
| wolffd@0 | 14 | 
| wolffd@0 | 15 <p><h2> | 
| wolffd@0 | 16 Synopsis | 
| wolffd@0 | 17 </h2> | 
| wolffd@0 | 18 <PRE> | 
| wolffd@0 | 19 [net, options] = netopt(net, options, x, t, alg) | 
| wolffd@0 | 20 [net, options, varargout] = netopt(net, options, x, t, alg) | 
| wolffd@0 | 21 </PRE> | 
| wolffd@0 | 22 | 
| wolffd@0 | 23 | 
| wolffd@0 | 24 <p><h2> | 
| wolffd@0 | 25 Description | 
| wolffd@0 | 26 </h2> | 
| wolffd@0 | 27 | 
| wolffd@0 | 28 <p><CODE>netopt</CODE> is a helper function which facilitates the training of | 
| wolffd@0 | 29 networks using the general purpose optimizers as well as sampling from the | 
| wolffd@0 | 30 posterior distribution of parameters using general purpose Markov chain | 
| wolffd@0 | 31 Monte Carlo sampling algorithms. It can be used with any function that | 
| wolffd@0 | 32 searches in parameter space using error and gradient functions. | 
| wolffd@0 | 33 | 
| wolffd@0 | 34 <p><CODE>[net, options] = netopt(net, options, x, t, alg)</CODE> takes a network | 
| wolffd@0 | 35 data structure <CODE>net</CODE>, together with a vector <CODE>options</CODE> of | 
| wolffd@0 | 36 parameters governing the behaviour of the optimization algorithm, a | 
| wolffd@0 | 37 matrix <CODE>x</CODE> of input vectors and a matrix <CODE>t</CODE> of target | 
| wolffd@0 | 38 vectors, and returns the trained network as well as an updated | 
| wolffd@0 | 39 <CODE>options</CODE> vector. The string <CODE>alg</CODE> determines which optimization | 
| wolffd@0 | 40 algorithm (<CODE>conjgrad</CODE>, <CODE>quasinew</CODE>, <CODE>scg</CODE>, etc.) or Monte | 
| wolffd@0 | 41 Carlo algorithm (such as <CODE>hmc</CODE>) will be used. | 
| wolffd@0 | 42 | 
| wolffd@0 | 43 <p><CODE>[net, options, varargout] = netopt(net, options, x, t, alg)</CODE> | 
| wolffd@0 | 44 also returns any additional return values from the optimisation algorithm. | 
| wolffd@0 | 45 | 
| wolffd@0 | 46 <p><h2> | 
| wolffd@0 | 47 Examples | 
| wolffd@0 | 48 </h2> | 
| wolffd@0 | 49 Suppose we create a 4-input, 3 hidden unit, 2-output feed-forward | 
| wolffd@0 | 50 network using <CODE>net = mlp(4, 3, 2, 'linear')</CODE>. We can then train | 
| wolffd@0 | 51 the network with the scaled conjugate gradient algorithm by using | 
| wolffd@0 | 52 <CODE>net = netopt(net, options, x, t, 'scg')</CODE> where <CODE>x</CODE> and | 
| wolffd@0 | 53 <CODE>t</CODE> are the input and target data matrices respectively, and the | 
| wolffd@0 | 54 options vector is set appropriately for <CODE>scg</CODE>. | 
| wolffd@0 | 55 | 
| wolffd@0 | 56 <p>If we also wish to plot the learning curve, we can use the additional | 
| wolffd@0 | 57 return value <CODE>errlog</CODE> given by <CODE>scg</CODE>: | 
| wolffd@0 | 58 <PRE> | 
| wolffd@0 | 59 | 
| wolffd@0 | 60 [net, options, errlog] = netopt(net, options, x, t, 'scg'); | 
| wolffd@0 | 61 </PRE> | 
| wolffd@0 | 62 | 
| wolffd@0 | 63 | 
| wolffd@0 | 64 <p><h2> | 
| wolffd@0 | 65 See Also | 
| wolffd@0 | 66 </h2> | 
| wolffd@0 | 67 <CODE><a href="netgrad.htm">netgrad</a></CODE>, <CODE><a href="bfgs.htm">bfgs</a></CODE>, <CODE><a href="conjgrad.htm">conjgrad</a></CODE>, <CODE><a href="graddesc.htm">graddesc</a></CODE>, <CODE><a href="hmc.htm">hmc</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr> | 
| wolffd@0 | 68 <b>Pages:</b> | 
| wolffd@0 | 69 <a href="index.htm">Index</a> | 
| wolffd@0 | 70 <hr> | 
| wolffd@0 | 71 <p>Copyright (c) Ian T Nabney (1996-9) | 
| wolffd@0 | 72 | 
| wolffd@0 | 73 | 
| wolffd@0 | 74 </body> | 
| wolffd@0 | 75 </html> |