annotate toolboxes/FullBNT-1.0.7/nethelp3.3/demprior.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual demprior
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> demprior
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Demonstrate sampling from a multi-parameter Gaussian prior.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19 demprior</PRE>
wolffd@0 20
wolffd@0 21
wolffd@0 22 <p><h2>
wolffd@0 23 Description
wolffd@0 24 </h2>
wolffd@0 25 This function plots the functions represented by a multi-layer perceptron
wolffd@0 26 network when the weights are set to values drawn from a Gaussian prior
wolffd@0 27 distribution. The parameters <CODE>aw1</CODE>, <CODE>ab1</CODE> <CODE>aw2</CODE> and <CODE>ab2</CODE>
wolffd@0 28 control the inverse variances of the first-layer weights, the hidden unit
wolffd@0 29 biases, the second-layer weights and the output unit biases respectively.
wolffd@0 30 Their values can be adjusted on a logarithmic scale using the sliders, or
wolffd@0 31 by typing values into the text boxes and pressing the return key.
wolffd@0 32
wolffd@0 33 <p><h2>
wolffd@0 34 See Also
wolffd@0 35 </h2>
wolffd@0 36 <CODE><a href="mlp.htm">mlp</a></CODE><hr>
wolffd@0 37 <b>Pages:</b>
wolffd@0 38 <a href="index.htm">Index</a>
wolffd@0 39 <hr>
wolffd@0 40 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 41
wolffd@0 42
wolffd@0 43 </body>
wolffd@0 44 </html>