annotate toolboxes/FullBNT-1.0.7/bnt/learning/dirichlet_score_family.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function LL = dirichlet_score_family(counts, prior)
wolffd@0 2 % DIRICHLET_SCORE Compute the log marginal likelihood of a single family
wolffd@0 3 % LL = dirichlet_score(counts, prior)
wolffd@0 4 %
wolffd@0 5 % counts(a, b, ..., z) is the number of times parent 1 = a, parent 2 = b, ..., child = z
wolffd@0 6 % prior is an optional multidimensional array of the same shape as counts.
wolffd@0 7 % It defaults to a uniform prior.
wolffd@0 8 %
wolffd@0 9 % We marginalize out the parameters:
wolffd@0 10 % LL = log \int \prod_m P(x(i,m) | x(Pa_i,m), theta_i) P(theta_i) d(theta_i)
wolffd@0 11
wolffd@0 12
wolffd@0 13 % LL = log[ prod_j gamma(alpha_ij)/gamma(alpha_ij + N_ij) *
wolffd@0 14 % prod_k gamma(alpha_ijk + N_ijk)/gamma(alpha_ijk) ]
wolffd@0 15 % Call the prod_k term U and the prod_j term V.
wolffd@0 16 % We reshape all quantities into (j,k) matrices
wolffd@0 17 % This formula was first derived by Cooper and Herskovits, 1992.
wolffd@0 18 % See also "Learning Bayesian Networks", Heckerman, Geiger and Chickering, MLJ 95.
wolffd@0 19
wolffd@0 20 ns = mysize(counts);
wolffd@0 21 ns_ps = ns(1:end-1);
wolffd@0 22 ns_self = ns(end);
wolffd@0 23
wolffd@0 24 if nargin < 2, prior = normalise(myones(ns)); end
wolffd@0 25
wolffd@0 26
wolffd@0 27 if 1
wolffd@0 28 prior = reshape(prior(:), [prod(ns_ps) ns_self]);
wolffd@0 29 counts = reshape(counts, [prod(ns_ps) ns_self]);
wolffd@0 30 %U = prod(gamma(prior + counts) ./ gamma(prior), 2); % mult over k
wolffd@0 31 LU = sum(gammaln(prior + counts) - gammaln(prior), 2);
wolffd@0 32 alpha_ij = sum(prior, 2); % sum over k
wolffd@0 33 N_ij = sum(counts, 2);
wolffd@0 34 %V = gamma(alpha_ij) ./ gamma(alpha_ij + N_ij);
wolffd@0 35 LV = gammaln(alpha_ij) - gammaln(alpha_ij + N_ij);
wolffd@0 36 %L = prod(U .* V);
wolffd@0 37 LL = sum(LU + LV);
wolffd@0 38 else
wolffd@0 39 CPT = mk_stochastic(prior + counts);
wolffd@0 40 LL = sum(log(CPT(:) .* counts(:)));
wolffd@0 41 end
wolffd@0 42