annotate core/tools/machine_learning/weighted_kmeans.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [centres, cweights, post, errlog, options] = weighted_kmeans(centres, data, weights, options)
wolffd@0 2 %[centres, cweights, post, errlog, options] = weighted_kmeans(centres,data, weights, options)
wolffd@0 3 %
wolffd@0 4 % weighted_kmeans Trains a k means cluster model on weighted input vectors
wolffd@0 5 %
wolffd@0 6 % Adapted from the Netlab Toolbox by Daniel Wolff,
wolffd@0 7 % This function takes a WEIGHTS vector, containing weights for the
wolffd@0 8 % different data points. This can be used for training with varying
wolffd@0 9 % discretisation intervals.
wolffd@0 10 %
wolffd@0 11 % Description
wolffd@0 12 % CENTRES = weighted_kmeans(NCENTRES, DATA, WEIGHTS, OPTIONS) or
wolffd@0 13 % CENTRES = weighted_kmeans(CENTRES, DATA, WEIGHTS, OPTIONS) uses the batch K-means
wolffd@0 14 % algorithm to set the centres of a cluster model. The matrix DATA
wolffd@0 15 % represents the data which is being clustered, with each row
wolffd@0 16 % corresponding to a vector. The sum of squares error function is used.
wolffd@0 17 % The point at which a local minimum is achieved is returned as
wolffd@0 18 % CENTRES. The error value at that point is returned in OPTIONS(8).
wolffd@0 19 %
wolffd@0 20 %
wolffd@0 21 % POST and ERRLOG
wolffd@0 22 % also return the cluster number (in a one-of-N encoding) for each
wolffd@0 23 % data point in POST and a log of the error values after each cycle in
wolffd@0 24 % ERRLOG. The optional parameters have the following
wolffd@0 25 % interpretations.
wolffd@0 26 %
wolffd@0 27 % OPTIONS(1) is set to 1 to display error values; also logs error
wolffd@0 28 % values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then
wolffd@0 29 % only warning messages are displayed. If OPTIONS(1) is -1, then
wolffd@0 30 % nothing is displayed.
wolffd@0 31 %
wolffd@0 32 % OPTIONS(2) is a measure of the absolute precision required for the
wolffd@0 33 % value of CENTRES at the solution. If the absolute difference between
wolffd@0 34 % the values of CENTRES between two successive steps is less than
wolffd@0 35 % OPTIONS(2), then this condition is satisfied.
wolffd@0 36 %
wolffd@0 37 % OPTIONS(3) is a measure of the precision required of the error
wolffd@0 38 % function at the solution. If the absolute difference between the
wolffd@0 39 % error functions between two successive steps is less than OPTIONS(3),
wolffd@0 40 % then this condition is satisfied. Both this and the previous
wolffd@0 41 % condition must be satisfied for termination.
wolffd@0 42 %
wolffd@0 43 % OPTIONS(14) is the maximum number of iterations; default 100.
wolffd@0 44 %
wolffd@0 45 % See also
wolffd@0 46 % GMMINIT, GMMEM
wolffd@0 47 %
wolffd@0 48
wolffd@0 49 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 50
wolffd@0 51 [ndata, data_dim] = size(data);
wolffd@0 52 [ncentres, dim] = size(centres);
wolffd@0 53
wolffd@0 54 if dim ~= data_dim
wolffd@0 55 if dim == 1 && ncentres == 1 && centres > 1
wolffd@0 56
wolffd@0 57 if ndata == numel(weights)
wolffd@0 58
wolffd@0 59 % ---
wolffd@0 60 % allow for number of centres specification
wolffd@0 61 % ---
wolffd@0 62 dim = data_dim;
wolffd@0 63 ncentres = centres;
wolffd@0 64
wolffd@0 65 options(5) = 1;
wolffd@0 66 else
wolffd@0 67 error('Data dimension does not match number of weights')
wolffd@0 68 end
wolffd@0 69
wolffd@0 70 else
wolffd@0 71 error('Data dimension does not match dimension of centres')
wolffd@0 72 end
wolffd@0 73 end
wolffd@0 74
wolffd@0 75 if (ncentres > ndata)
wolffd@0 76 error('More centres than data')
wolffd@0 77 end
wolffd@0 78
wolffd@0 79 % Sort out the options
wolffd@0 80 if (options(14))
wolffd@0 81 niters = options(14);
wolffd@0 82 else
wolffd@0 83 niters = 100;
wolffd@0 84 end
wolffd@0 85
wolffd@0 86 store = 0;
wolffd@0 87 if (nargout > 3)
wolffd@0 88 store = 1;
wolffd@0 89 errlog = zeros(1, niters);
wolffd@0 90 end
wolffd@0 91
wolffd@0 92 % Check if centres and posteriors need to be initialised from data
wolffd@0 93 if (options(5) == 1)
wolffd@0 94 % Do the initialisation
wolffd@0 95 perm = randperm(ndata);
wolffd@0 96 perm = perm(1:ncentres);
wolffd@0 97
wolffd@0 98 % Assign first ncentres (permuted) data points as centres
wolffd@0 99 centres = data(perm, :);
wolffd@0 100 end
wolffd@0 101 % Matrix to make unit vectors easy to construct
wolffd@0 102 id = eye(ncentres);
wolffd@0 103
wolffd@0 104 % save accumulated weight for a center
wolffd@0 105 cweights = zeros(ncentres, 1);
wolffd@0 106
wolffd@0 107 % Main loop of algorithm
wolffd@0 108 for n = 1:niters
wolffd@0 109
wolffd@0 110 % Save old centres to check for termination
wolffd@0 111 old_centres = centres;
wolffd@0 112
wolffd@0 113 % Calculate posteriors based on existing centres
wolffd@0 114 d2 = dist2(data, centres);
wolffd@0 115 % Assign each point to nearest centre
wolffd@0 116 [minvals, index] = min(d2', [], 1);
wolffd@0 117 post = logical(id(index,:));
wolffd@0 118
wolffd@0 119 % num_points = sum(post, 1);
wolffd@0 120 % Adjust the centres based on new posteriors
wolffd@0 121 for j = 1:ncentres
wolffd@0 122 if (sum(weights(post(:,j))) > 0)
wolffd@0 123 % ---
wolffd@0 124 % NOTE: this is edited to include the weights.
wolffd@0 125 % Instead of summing the vectors directly, the vectors are weighted
wolffd@0 126 % and then the result is divided by the sum of the weights instead
wolffd@0 127 % of the number of vectors for this class
wolffd@0 128 % ---
wolffd@0 129 cweights(j) = sum(weights(post(:,j)));
wolffd@0 130
wolffd@0 131 centres(j,:) = sum(diag(weights(post(:,j))) * data(post(:,j),:), 1)...
wolffd@0 132 /cweights(j);
wolffd@0 133 end
wolffd@0 134 end
wolffd@0 135
wolffd@0 136 % Error value is total squared distance from cluster centres
wolffd@0 137 % edit: weighted by the vectors weight
wolffd@0 138 e = sum(minvals .* weights);
wolffd@0 139 if store
wolffd@0 140 errlog(n) = e;
wolffd@0 141 end
wolffd@0 142 if options(1) > 0
wolffd@0 143 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e);
wolffd@0 144 end
wolffd@0 145
wolffd@0 146 if n > 1
wolffd@0 147 % Test for termination
wolffd@0 148 if max(max(abs(centres - old_centres))) < options(2) & ...
wolffd@0 149 abs(old_e - e) < options(3)
wolffd@0 150 options(8) = e;
wolffd@0 151 return;
wolffd@0 152 end
wolffd@0 153 end
wolffd@0 154 old_e = e;
wolffd@0 155 end
wolffd@0 156
wolffd@0 157 % If we get here, then we haven't terminated in the given number of
wolffd@0 158 % iterations.
wolffd@0 159 options(8) = e;
wolffd@0 160 if (options(1) >= 0)
wolffd@0 161 disp(maxitmess);
wolffd@0 162 end
wolffd@0 163