annotate toolboxes/FullBNT-1.0.7/nethelp3.3/gtminit.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual gtminit
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> gtminit
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Initialise the weights and latent sample in a GTM.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19 net = gtminit(net, options, data, samptype)
wolffd@0 20 net = gtminit(net, options, data, samptype, lsampsize, rbfsampsize)
wolffd@0 21 </PRE>
wolffd@0 22
wolffd@0 23
wolffd@0 24 <p><h2>
wolffd@0 25 Description
wolffd@0 26 </h2>
wolffd@0 27 <CODE>net = gtminit(net, options, data, samptype)</CODE> takes a GTM <CODE>net</CODE>
wolffd@0 28 and generates a sample of latent data points and sets the centres (and
wolffd@0 29 widths if appropriate) of
wolffd@0 30 <CODE>net.rbfnet</CODE>.
wolffd@0 31
wolffd@0 32 <p>If the <CODE>samptype</CODE> is <CODE>'regular'</CODE>, then regular grids of latent
wolffd@0 33 data points and RBF centres are created. The dimension of the latent data
wolffd@0 34 space must be
wolffd@0 35 1 or 2. For one-dimensional latent space, the <CODE>lsampsize</CODE> parameter
wolffd@0 36 gives the number of latent points and the <CODE>rbfsampsize</CODE> parameter
wolffd@0 37 gives the number of RBF centres. For a two-dimensional latent space,
wolffd@0 38 these parameters must be vectors of length 2 with the number of points
wolffd@0 39 in each of the x and y directions to create a rectangular grid. The
wolffd@0 40 widths of the RBF basis functions are set by a call to <CODE>rbfsetfw</CODE>
wolffd@0 41 passing <CODE>options(7)</CODE> as the scaling parameter.
wolffd@0 42
wolffd@0 43 <p>If the <CODE>samptype</CODE> is <CODE>'uniform'</CODE> or <CODE>'gaussian'</CODE> then the
wolffd@0 44 latent data is found by sampling from a uniform or
wolffd@0 45 Gaussian distribution correspondingly. The RBF basis function parameters
wolffd@0 46 are set
wolffd@0 47 by a call to <CODE>rbfsetbf</CODE> with the <CODE>data</CODE> parameter
wolffd@0 48 as dataset and the <CODE>options</CODE> vector.
wolffd@0 49
wolffd@0 50 <p>Finally, the output layer weights of the RBF are initialised by
wolffd@0 51 mapping the mean of the latent variable to the mean of the target variable,
wolffd@0 52 and the L-dimensional latent variale variance to the variance of the
wolffd@0 53 targets along the first L principal components.
wolffd@0 54
wolffd@0 55 <p><h2>
wolffd@0 56 See Also
wolffd@0 57 </h2>
wolffd@0 58 <CODE><a href="gtm.htm">gtm</a></CODE>, <CODE><a href="gtmem.htm">gtmem</a></CODE>, <CODE><a href="pca.htm">pca</a></CODE>, <CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE>, <CODE><a href="rbfsetfw.htm">rbfsetfw</a></CODE><hr>
wolffd@0 59 <b>Pages:</b>
wolffd@0 60 <a href="index.htm">Index</a>
wolffd@0 61 <hr>
wolffd@0 62 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 63
wolffd@0 64
wolffd@0 65 </body>
wolffd@0 66 </html>