wolffd@0: wolffd@0:
wolffd@0:wolffd@0: net = gtminit(net, options, data, samptype) wolffd@0: net = gtminit(net, options, data, samptype, lsampsize, rbfsampsize) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
net = gtminit(net, options, data, samptype)
takes a GTM net
wolffd@0: and generates a sample of latent data points and sets the centres (and
wolffd@0: widths if appropriate) of
wolffd@0: net.rbfnet
.
wolffd@0:
wolffd@0: If the samptype
is 'regular'
, then regular grids of latent
wolffd@0: data points and RBF centres are created. The dimension of the latent data
wolffd@0: space must be
wolffd@0: 1 or 2. For one-dimensional latent space, the lsampsize
parameter
wolffd@0: gives the number of latent points and the rbfsampsize
parameter
wolffd@0: gives the number of RBF centres. For a two-dimensional latent space,
wolffd@0: these parameters must be vectors of length 2 with the number of points
wolffd@0: in each of the x and y directions to create a rectangular grid. The
wolffd@0: widths of the RBF basis functions are set by a call to rbfsetfw
wolffd@0: passing options(7)
as the scaling parameter.
wolffd@0:
wolffd@0:
If the samptype
is 'uniform'
or 'gaussian'
then the
wolffd@0: latent data is found by sampling from a uniform or
wolffd@0: Gaussian distribution correspondingly. The RBF basis function parameters
wolffd@0: are set
wolffd@0: by a call to rbfsetbf
with the data
parameter
wolffd@0: as dataset and the options
vector.
wolffd@0:
wolffd@0:
Finally, the output layer weights of the RBF are initialised by wolffd@0: mapping the mean of the latent variable to the mean of the target variable, wolffd@0: and the L-dimensional latent variale variance to the variance of the wolffd@0: targets along the first L principal components. wolffd@0: wolffd@0:
gtm
, gtmem
, pca
, rbfsetbf
, rbfsetfw
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: