Mercurial > hg > btrack
changeset 96:c58f01834337
Merge branch 'release/1.0.4'
author | Adam Stark <adamstark.uk@gmail.com> |
---|---|
date | Sat, 18 Jun 2016 10:50:06 +0100 |
parents | 496d12635af8 (current diff) 4ba1239fa120 (diff) |
children | ca2d83d29814 |
files | README.md |
diffstat | 18 files changed, 1744 insertions(+), 312 deletions(-) [+] |
line wrap: on
line diff
--- a/README.md Sun Jan 10 11:36:52 2016 +0000 +++ b/README.md Sat Jun 18 10:50:06 2016 +0100 @@ -1,7 +1,7 @@ BTrack - A Real-Time Beat Tracker ================================= -** Version 1.0.3 ** +** Version 1.0.4 ** *by Adam Stark, Matthew Davies and Mark Plumbley.* @@ -22,6 +22,11 @@ Versions -------- +==== 1.0.4 ==== (18th June 2016) + +* Added option of using Kiss FFT +* Implementation changes to improve efficiency + ==== 1.0.3 ==== (10th January 2016) * Fixed implementation error in complex spectral difference (thanks to @zbanks for pointing it out) @@ -112,9 +117,16 @@ To compile BTrack, you will require the following libraries: -* FFTW * libsamplerate +And either: + +* FFTW (add the flag -DUSE_FFTW) + +or: + +* Kiss FFT (included with project, use the flag -DUSE_KISS_FFT) + License -------
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libs/kiss_fft130/COPYING Sat Jun 18 10:50:06 2016 +0100 @@ -0,0 +1,11 @@ +Copyright (c) 2003-2010 Mark Borgerding + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. + * Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libs/kiss_fft130/README Sat Jun 18 10:50:06 2016 +0100 @@ -0,0 +1,134 @@ +KISS FFT - A mixed-radix Fast Fourier Transform based up on the principle, +"Keep It Simple, Stupid." + + There are many great fft libraries already around. Kiss FFT is not trying +to be better than any of them. It only attempts to be a reasonably efficient, +moderately useful FFT that can use fixed or floating data types and can be +incorporated into someone's C program in a few minutes with trivial licensing. + +USAGE: + + The basic usage for 1-d complex FFT is: + + #include "kiss_fft.h" + + kiss_fft_cfg cfg = kiss_fft_alloc( nfft ,is_inverse_fft ,0,0 ); + + while ... + + ... // put kth sample in cx_in[k].r and cx_in[k].i + + kiss_fft( cfg , cx_in , cx_out ); + + ... // transformed. DC is in cx_out[0].r and cx_out[0].i + + free(cfg); + + Note: frequency-domain data is stored from dc up to 2pi. + so cx_out[0] is the dc bin of the FFT + and cx_out[nfft/2] is the Nyquist bin (if exists) + + Declarations are in "kiss_fft.h", along with a brief description of the +functions you'll need to use. + +Code definitions for 1d complex FFTs are in kiss_fft.c. + +You can do other cool stuff with the extras you'll find in tools/ + + * multi-dimensional FFTs + * real-optimized FFTs (returns the positive half-spectrum: (nfft/2+1) complex frequency bins) + * fast convolution FIR filtering (not available for fixed point) + * spectrum image creation + +The core fft and most tools/ code can be compiled to use float, double, + Q15 short or Q31 samples. The default is float. + + +BACKGROUND: + + I started coding this because I couldn't find a fixed point FFT that didn't +use assembly code. I started with floating point numbers so I could get the +theory straight before working on fixed point issues. In the end, I had a +little bit of code that could be recompiled easily to do ffts with short, float +or double (other types should be easy too). + + Once I got my FFT working, I was curious about the speed compared to +a well respected and highly optimized fft library. I don't want to criticize +this great library, so let's call it FFT_BRANDX. +During this process, I learned: + + 1. FFT_BRANDX has more than 100K lines of code. The core of kiss_fft is about 500 lines (cpx 1-d). + 2. It took me an embarrassingly long time to get FFT_BRANDX working. + 3. A simple program using FFT_BRANDX is 522KB. A similar program using kiss_fft is 18KB (without optimizing for size). + 4. FFT_BRANDX is roughly twice as fast as KISS FFT in default mode. + + It is wonderful that free, highly optimized libraries like FFT_BRANDX exist. +But such libraries carry a huge burden of complexity necessary to extract every +last bit of performance. + + Sometimes simpler is better, even if it's not better. + +FREQUENTLY ASKED QUESTIONS: + Q: Can I use kissfft in a project with a ___ license? + A: Yes. See LICENSE below. + + Q: Why don't I get the output I expect? + A: The two most common causes of this are + 1) scaling : is there a constant multiplier between what you got and what you want? + 2) mixed build environment -- all code must be compiled with same preprocessor + definitions for FIXED_POINT and kiss_fft_scalar + + Q: Will you write/debug my code for me? + A: Probably not unless you pay me. I am happy to answer pointed and topical questions, but + I may refer you to a book, a forum, or some other resource. + + +PERFORMANCE: + (on Athlon XP 2100+, with gcc 2.96, float data type) + + Kiss performed 10000 1024-pt cpx ffts in .63 s of cpu time. + For comparison, it took md5sum twice as long to process the same amount of data. + + Transforming 5 minutes of CD quality audio takes less than a second (nfft=1024). + +DO NOT: + ... use Kiss if you need the Fastest Fourier Transform in the World + ... ask me to add features that will bloat the code + +UNDER THE HOOD: + + Kiss FFT uses a time decimation, mixed-radix, out-of-place FFT. If you give it an input buffer + and output buffer that are the same, a temporary buffer will be created to hold the data. + + No static data is used. The core routines of kiss_fft are thread-safe (but not all of the tools directory). + + No scaling is done for the floating point version (for speed). + Scaling is done both ways for the fixed-point version (for overflow prevention). + + Optimized butterflies are used for factors 2,3,4, and 5. + + The real (i.e. not complex) optimization code only works for even length ffts. It does two half-length + FFTs in parallel (packed into real&imag), and then combines them via twiddling. The result is + nfft/2+1 complex frequency bins from DC to Nyquist. If you don't know what this means, search the web. + + The fast convolution filtering uses the overlap-scrap method, slightly + modified to put the scrap at the tail. + +LICENSE: + Revised BSD License, see COPYING for verbiage. + Basically, "free to use&change, give credit where due, no guarantees" + Note this license is compatible with GPL at one end of the spectrum and closed, commercial software at + the other end. See http://www.fsf.org/licensing/licenses + + A commercial license is available which removes the requirement for attribution. Contact me for details. + + +TODO: + *) Add real optimization for odd length FFTs + *) Document/revisit the input/output fft scaling + *) Make doc describing the overlap (tail) scrap fast convolution filtering in kiss_fastfir.c + *) Test all the ./tools/ code with fixed point (kiss_fastfir.c doesn't work, maybe others) + +AUTHOR: + Mark Borgerding + Mark@Borgerding.net
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libs/kiss_fft130/_kiss_fft_guts.h Sat Jun 18 10:50:06 2016 +0100 @@ -0,0 +1,164 @@ +/* +Copyright (c) 2003-2010, Mark Borgerding + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. + * Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +/* kiss_fft.h + defines kiss_fft_scalar as either short or a float type + and defines + typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */ +#include "kiss_fft.h" +#include <limits.h> + +#define MAXFACTORS 32 +/* e.g. an fft of length 128 has 4 factors + as far as kissfft is concerned + 4*4*4*2 + */ + +struct kiss_fft_state{ + int nfft; + int inverse; + int factors[2*MAXFACTORS]; + kiss_fft_cpx twiddles[1]; +}; + +/* + Explanation of macros dealing with complex math: + + C_MUL(m,a,b) : m = a*b + C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise + C_SUB( res, a,b) : res = a - b + C_SUBFROM( res , a) : res -= a + C_ADDTO( res , a) : res += a + * */ +#ifdef FIXED_POINT +#if (FIXED_POINT==32) +# define FRACBITS 31 +# define SAMPPROD int64_t +#define SAMP_MAX 2147483647 +#else +# define FRACBITS 15 +# define SAMPPROD int32_t +#define SAMP_MAX 32767 +#endif + +#define SAMP_MIN -SAMP_MAX + +#if defined(CHECK_OVERFLOW) +# define CHECK_OVERFLOW_OP(a,op,b) \ + if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \ + fprintf(stderr,"WARNING:overflow @ " __FILE__ "(%d): (%d " #op" %d) = %ld\n",__LINE__,(a),(b),(SAMPPROD)(a) op (SAMPPROD)(b) ); } +#endif + + +# define smul(a,b) ( (SAMPPROD)(a)*(b) ) +# define sround( x ) (kiss_fft_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS ) + +# define S_MUL(a,b) sround( smul(a,b) ) + +# define C_MUL(m,a,b) \ + do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \ + (m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0) + +# define DIVSCALAR(x,k) \ + (x) = sround( smul( x, SAMP_MAX/k ) ) + +# define C_FIXDIV(c,div) \ + do { DIVSCALAR( (c).r , div); \ + DIVSCALAR( (c).i , div); }while (0) + +# define C_MULBYSCALAR( c, s ) \ + do{ (c).r = sround( smul( (c).r , s ) ) ;\ + (c).i = sround( smul( (c).i , s ) ) ; }while(0) + +#else /* not FIXED_POINT*/ + +# define S_MUL(a,b) ( (a)*(b) ) +#define C_MUL(m,a,b) \ + do{ (m).r = (a).r*(b).r - (a).i*(b).i;\ + (m).i = (a).r*(b).i + (a).i*(b).r; }while(0) +# define C_FIXDIV(c,div) /* NOOP */ +# define C_MULBYSCALAR( c, s ) \ + do{ (c).r *= (s);\ + (c).i *= (s); }while(0) +#endif + +#ifndef CHECK_OVERFLOW_OP +# define CHECK_OVERFLOW_OP(a,op,b) /* noop */ +#endif + +#define C_ADD( res, a,b)\ + do { \ + CHECK_OVERFLOW_OP((a).r,+,(b).r)\ + CHECK_OVERFLOW_OP((a).i,+,(b).i)\ + (res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \ + }while(0) +#define C_SUB( res, a,b)\ + do { \ + CHECK_OVERFLOW_OP((a).r,-,(b).r)\ + CHECK_OVERFLOW_OP((a).i,-,(b).i)\ + (res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \ + }while(0) +#define C_ADDTO( res , a)\ + do { \ + CHECK_OVERFLOW_OP((res).r,+,(a).r)\ + CHECK_OVERFLOW_OP((res).i,+,(a).i)\ + (res).r += (a).r; (res).i += (a).i;\ + }while(0) + +#define C_SUBFROM( res , a)\ + do {\ + CHECK_OVERFLOW_OP((res).r,-,(a).r)\ + CHECK_OVERFLOW_OP((res).i,-,(a).i)\ + (res).r -= (a).r; (res).i -= (a).i; \ + }while(0) + + +#ifdef FIXED_POINT +# define KISS_FFT_COS(phase) floor(.5+SAMP_MAX * cos (phase)) +# define KISS_FFT_SIN(phase) floor(.5+SAMP_MAX * sin (phase)) +# define HALF_OF(x) ((x)>>1) +#elif defined(USE_SIMD) +# define KISS_FFT_COS(phase) _mm_set1_ps( cos(phase) ) +# define KISS_FFT_SIN(phase) _mm_set1_ps( sin(phase) ) +# define HALF_OF(x) ((x)*_mm_set1_ps(.5)) +#else +# define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase) +# define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase) +# define HALF_OF(x) ((x)*.5) +#endif + +#define kf_cexp(x,phase) \ + do{ \ + (x)->r = KISS_FFT_COS(phase);\ + (x)->i = KISS_FFT_SIN(phase);\ + }while(0) + + +/* a debugging function */ +#define pcpx(c)\ + fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) ) + + +#ifdef KISS_FFT_USE_ALLOCA +// define this to allow use of alloca instead of malloc for temporary buffers +// Temporary buffers are used in two case: +// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5 +// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform. +#include <alloca.h> +#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes) +#define KISS_FFT_TMP_FREE(ptr) +#else +#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes) +#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libs/kiss_fft130/kiss_fft.c Sat Jun 18 10:50:06 2016 +0100 @@ -0,0 +1,408 @@ +/* +Copyright (c) 2003-2010, Mark Borgerding + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. + * Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + + +#include "_kiss_fft_guts.h" +/* The guts header contains all the multiplication and addition macros that are defined for + fixed or floating point complex numbers. It also delares the kf_ internal functions. + */ + +static void kf_bfly2( + kiss_fft_cpx * Fout, + const size_t fstride, + const kiss_fft_cfg st, + int m + ) +{ + kiss_fft_cpx * Fout2; + kiss_fft_cpx * tw1 = st->twiddles; + kiss_fft_cpx t; + Fout2 = Fout + m; + do{ + C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2); + + C_MUL (t, *Fout2 , *tw1); + tw1 += fstride; + C_SUB( *Fout2 , *Fout , t ); + C_ADDTO( *Fout , t ); + ++Fout2; + ++Fout; + }while (--m); +} + +static void kf_bfly4( + kiss_fft_cpx * Fout, + const size_t fstride, + const kiss_fft_cfg st, + const size_t m + ) +{ + kiss_fft_cpx *tw1,*tw2,*tw3; + kiss_fft_cpx scratch[6]; + size_t k=m; + const size_t m2=2*m; + const size_t m3=3*m; + + + tw3 = tw2 = tw1 = st->twiddles; + + do { + C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4); + + C_MUL(scratch[0],Fout[m] , *tw1 ); + C_MUL(scratch[1],Fout[m2] , *tw2 ); + C_MUL(scratch[2],Fout[m3] , *tw3 ); + + C_SUB( scratch[5] , *Fout, scratch[1] ); + C_ADDTO(*Fout, scratch[1]); + C_ADD( scratch[3] , scratch[0] , scratch[2] ); + C_SUB( scratch[4] , scratch[0] , scratch[2] ); + C_SUB( Fout[m2], *Fout, scratch[3] ); + tw1 += fstride; + tw2 += fstride*2; + tw3 += fstride*3; + C_ADDTO( *Fout , scratch[3] ); + + if(st->inverse) { + Fout[m].r = scratch[5].r - scratch[4].i; + Fout[m].i = scratch[5].i + scratch[4].r; + Fout[m3].r = scratch[5].r + scratch[4].i; + Fout[m3].i = scratch[5].i - scratch[4].r; + }else{ + Fout[m].r = scratch[5].r + scratch[4].i; + Fout[m].i = scratch[5].i - scratch[4].r; + Fout[m3].r = scratch[5].r - scratch[4].i; + Fout[m3].i = scratch[5].i + scratch[4].r; + } + ++Fout; + }while(--k); +} + +static void kf_bfly3( + kiss_fft_cpx * Fout, + const size_t fstride, + const kiss_fft_cfg st, + size_t m + ) +{ + size_t k=m; + const size_t m2 = 2*m; + kiss_fft_cpx *tw1,*tw2; + kiss_fft_cpx scratch[5]; + kiss_fft_cpx epi3; + epi3 = st->twiddles[fstride*m]; + + tw1=tw2=st->twiddles; + + do{ + C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3); + + C_MUL(scratch[1],Fout[m] , *tw1); + C_MUL(scratch[2],Fout[m2] , *tw2); + + C_ADD(scratch[3],scratch[1],scratch[2]); + C_SUB(scratch[0],scratch[1],scratch[2]); + tw1 += fstride; + tw2 += fstride*2; + + Fout[m].r = Fout->r - HALF_OF(scratch[3].r); + Fout[m].i = Fout->i - HALF_OF(scratch[3].i); + + C_MULBYSCALAR( scratch[0] , epi3.i ); + + C_ADDTO(*Fout,scratch[3]); + + Fout[m2].r = Fout[m].r + scratch[0].i; + Fout[m2].i = Fout[m].i - scratch[0].r; + + Fout[m].r -= scratch[0].i; + Fout[m].i += scratch[0].r; + + ++Fout; + }while(--k); +} + +static void kf_bfly5( + kiss_fft_cpx * Fout, + const size_t fstride, + const kiss_fft_cfg st, + int m + ) +{ + kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; + int u; + kiss_fft_cpx scratch[13]; + kiss_fft_cpx * twiddles = st->twiddles; + kiss_fft_cpx *tw; + kiss_fft_cpx ya,yb; + ya = twiddles[fstride*m]; + yb = twiddles[fstride*2*m]; + + Fout0=Fout; + Fout1=Fout0+m; + Fout2=Fout0+2*m; + Fout3=Fout0+3*m; + Fout4=Fout0+4*m; + + tw=st->twiddles; + for ( u=0; u<m; ++u ) { + C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5); + scratch[0] = *Fout0; + + C_MUL(scratch[1] ,*Fout1, tw[u*fstride]); + C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]); + C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]); + C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]); + + C_ADD( scratch[7],scratch[1],scratch[4]); + C_SUB( scratch[10],scratch[1],scratch[4]); + C_ADD( scratch[8],scratch[2],scratch[3]); + C_SUB( scratch[9],scratch[2],scratch[3]); + + Fout0->r += scratch[7].r + scratch[8].r; + Fout0->i += scratch[7].i + scratch[8].i; + + scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r); + scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r); + + scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i); + scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i); + + C_SUB(*Fout1,scratch[5],scratch[6]); + C_ADD(*Fout4,scratch[5],scratch[6]); + + scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r); + scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r); + scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i); + scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i); + + C_ADD(*Fout2,scratch[11],scratch[12]); + C_SUB(*Fout3,scratch[11],scratch[12]); + + ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; + } +} + +/* perform the butterfly for one stage of a mixed radix FFT */ +static void kf_bfly_generic( + kiss_fft_cpx * Fout, + const size_t fstride, + const kiss_fft_cfg st, + int m, + int p + ) +{ + int u,k,q1,q; + kiss_fft_cpx * twiddles = st->twiddles; + kiss_fft_cpx t; + int Norig = st->nfft; + + kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p); + + for ( u=0; u<m; ++u ) { + k=u; + for ( q1=0 ; q1<p ; ++q1 ) { + scratch[q1] = Fout[ k ]; + C_FIXDIV(scratch[q1],p); + k += m; + } + + k=u; + for ( q1=0 ; q1<p ; ++q1 ) { + int twidx=0; + Fout[ k ] = scratch[0]; + for (q=1;q<p;++q ) { + twidx += fstride * k; + if (twidx>=Norig) twidx-=Norig; + C_MUL(t,scratch[q] , twiddles[twidx] ); + C_ADDTO( Fout[ k ] ,t); + } + k += m; + } + } + KISS_FFT_TMP_FREE(scratch); +} + +static +void kf_work( + kiss_fft_cpx * Fout, + const kiss_fft_cpx * f, + const size_t fstride, + int in_stride, + int * factors, + const kiss_fft_cfg st + ) +{ + kiss_fft_cpx * Fout_beg=Fout; + const int p=*factors++; /* the radix */ + const int m=*factors++; /* stage's fft length/p */ + const kiss_fft_cpx * Fout_end = Fout + p*m; + +#ifdef _OPENMP + // use openmp extensions at the + // top-level (not recursive) + if (fstride==1 && p<=5) + { + int k; + + // execute the p different work units in different threads +# pragma omp parallel for + for (k=0;k<p;++k) + kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st); + // all threads have joined by this point + + switch (p) { + case 2: kf_bfly2(Fout,fstride,st,m); break; + case 3: kf_bfly3(Fout,fstride,st,m); break; + case 4: kf_bfly4(Fout,fstride,st,m); break; + case 5: kf_bfly5(Fout,fstride,st,m); break; + default: kf_bfly_generic(Fout,fstride,st,m,p); break; + } + return; + } +#endif + + if (m==1) { + do{ + *Fout = *f; + f += fstride*in_stride; + }while(++Fout != Fout_end ); + }else{ + do{ + // recursive call: + // DFT of size m*p performed by doing + // p instances of smaller DFTs of size m, + // each one takes a decimated version of the input + kf_work( Fout , f, fstride*p, in_stride, factors,st); + f += fstride*in_stride; + }while( (Fout += m) != Fout_end ); + } + + Fout=Fout_beg; + + // recombine the p smaller DFTs + switch (p) { + case 2: kf_bfly2(Fout,fstride,st,m); break; + case 3: kf_bfly3(Fout,fstride,st,m); break; + case 4: kf_bfly4(Fout,fstride,st,m); break; + case 5: kf_bfly5(Fout,fstride,st,m); break; + default: kf_bfly_generic(Fout,fstride,st,m,p); break; + } +} + +/* facbuf is populated by p1,m1,p2,m2, ... + where + p[i] * m[i] = m[i-1] + m0 = n */ +static +void kf_factor(int n,int * facbuf) +{ + int p=4; + double floor_sqrt; + floor_sqrt = floor( sqrt((double)n) ); + + /*factor out powers of 4, powers of 2, then any remaining primes */ + do { + while (n % p) { + switch (p) { + case 4: p = 2; break; + case 2: p = 3; break; + default: p += 2; break; + } + if (p > floor_sqrt) + p = n; /* no more factors, skip to end */ + } + n /= p; + *facbuf++ = p; + *facbuf++ = n; + } while (n > 1); +} + +/* + * + * User-callable function to allocate all necessary storage space for the fft. + * + * The return value is a contiguous block of memory, allocated with malloc. As such, + * It can be freed with free(), rather than a kiss_fft-specific function. + * */ +kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem ) +{ + kiss_fft_cfg st=NULL; + size_t memneeded = sizeof(struct kiss_fft_state) + + sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/ + + if ( lenmem==NULL ) { + st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded ); + }else{ + if (mem != NULL && *lenmem >= memneeded) + st = (kiss_fft_cfg)mem; + *lenmem = memneeded; + } + if (st) { + int i; + st->nfft=nfft; + st->inverse = inverse_fft; + + for (i=0;i<nfft;++i) { + const double pi=3.141592653589793238462643383279502884197169399375105820974944; + double phase = -2*pi*i / nfft; + if (st->inverse) + phase *= -1; + kf_cexp(st->twiddles+i, phase ); + } + + kf_factor(nfft,st->factors); + } + return st; +} + + +void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride) +{ + if (fin == fout) { + //NOTE: this is not really an in-place FFT algorithm. + //It just performs an out-of-place FFT into a temp buffer + kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft); + kf_work(tmpbuf,fin,1,in_stride, st->factors,st); + memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft); + KISS_FFT_TMP_FREE(tmpbuf); + }else{ + kf_work( fout, fin, 1,in_stride, st->factors,st ); + } +} + +void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout) +{ + kiss_fft_stride(cfg,fin,fout,1); +} + + +void kiss_fft_cleanup(void) +{ + // nothing needed any more +} + +int kiss_fft_next_fast_size(int n) +{ + while(1) { + int m=n; + while ( (m%2) == 0 ) m/=2; + while ( (m%3) == 0 ) m/=3; + while ( (m%5) == 0 ) m/=5; + if (m<=1) + break; /* n is completely factorable by twos, threes, and fives */ + n++; + } + return n; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libs/kiss_fft130/kiss_fft.h Sat Jun 18 10:50:06 2016 +0100 @@ -0,0 +1,124 @@ +#ifndef KISS_FFT_H +#define KISS_FFT_H + +#include <stdlib.h> +#include <stdio.h> +#include <math.h> +#include <string.h> + +#ifdef __cplusplus +extern "C" { +#endif + +/* + ATTENTION! + If you would like a : + -- a utility that will handle the caching of fft objects + -- real-only (no imaginary time component ) FFT + -- a multi-dimensional FFT + -- a command-line utility to perform ffts + -- a command-line utility to perform fast-convolution filtering + + Then see kfc.h kiss_fftr.h kiss_fftnd.h fftutil.c kiss_fastfir.c + in the tools/ directory. +*/ + +#ifdef USE_SIMD +# include <xmmintrin.h> +# define kiss_fft_scalar __m128 +#define KISS_FFT_MALLOC(nbytes) _mm_malloc(nbytes,16) +#define KISS_FFT_FREE _mm_free +#else +#define KISS_FFT_MALLOC malloc +#define KISS_FFT_FREE free +#endif + + +#ifdef FIXED_POINT +#include <sys/types.h> +# if (FIXED_POINT == 32) +# define kiss_fft_scalar int32_t +# else +# define kiss_fft_scalar int16_t +# endif +#else +# ifndef kiss_fft_scalar +/* default is float */ +# define kiss_fft_scalar float +# endif +#endif + +typedef struct { + kiss_fft_scalar r; + kiss_fft_scalar i; +}kiss_fft_cpx; + +typedef struct kiss_fft_state* kiss_fft_cfg; + +/* + * kiss_fft_alloc + * + * Initialize a FFT (or IFFT) algorithm's cfg/state buffer. + * + * typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0,NULL,NULL); + * + * The return value from fft_alloc is a cfg buffer used internally + * by the fft routine or NULL. + * + * If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using malloc. + * The returned value should be free()d when done to avoid memory leaks. + * + * The state can be placed in a user supplied buffer 'mem': + * If lenmem is not NULL and mem is not NULL and *lenmem is large enough, + * then the function places the cfg in mem and the size used in *lenmem + * and returns mem. + * + * If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough), + * then the function returns NULL and places the minimum cfg + * buffer size in *lenmem. + * */ + +kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem); + +/* + * kiss_fft(cfg,in_out_buf) + * + * Perform an FFT on a complex input buffer. + * for a forward FFT, + * fin should be f[0] , f[1] , ... ,f[nfft-1] + * fout will be F[0] , F[1] , ... ,F[nfft-1] + * Note that each element is complex and can be accessed like + f[k].r and f[k].i + * */ +void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout); + +/* + A more generic version of the above function. It reads its input from every Nth sample. + * */ +void kiss_fft_stride(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int fin_stride); + +/* If kiss_fft_alloc allocated a buffer, it is one contiguous + buffer and can be simply free()d when no longer needed*/ +#define kiss_fft_free free + +/* + Cleans up some memory that gets managed internally. Not necessary to call, but it might clean up + your compiler output to call this before you exit. +*/ +void kiss_fft_cleanup(void); + + +/* + * Returns the smallest integer k, such that k>=n and k has only "fast" factors (2,3,5) + */ +int kiss_fft_next_fast_size(int n); + +/* for real ffts, we need an even size */ +#define kiss_fftr_next_fast_size_real(n) \ + (kiss_fft_next_fast_size( ((n)+1)>>1)<<1) + +#ifdef __cplusplus +} +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libs/kiss_fft130/kissfft.hh Sat Jun 18 10:50:06 2016 +0100 @@ -0,0 +1,299 @@ +#ifndef KISSFFT_CLASS_HH +#include <complex> +#include <vector> + +namespace kissfft_utils { + +template <typename T_scalar> +struct traits +{ + typedef T_scalar scalar_type; + typedef std::complex<scalar_type> cpx_type; + void fill_twiddles( std::complex<T_scalar> * dst ,int nfft,bool inverse) + { + T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft; + for (int i=0;i<nfft;++i) + dst[i] = exp( std::complex<T_scalar>(0,i*phinc) ); + } + + void prepare( + std::vector< std::complex<T_scalar> > & dst, + int nfft,bool inverse, + std::vector<int> & stageRadix, + std::vector<int> & stageRemainder ) + { + _twiddles.resize(nfft); + fill_twiddles( &_twiddles[0],nfft,inverse); + dst = _twiddles; + + //factorize + //start factoring out 4's, then 2's, then 3,5,7,9,... + int n= nfft; + int p=4; + do { + while (n % p) { + switch (p) { + case 4: p = 2; break; + case 2: p = 3; break; + default: p += 2; break; + } + if (p*p>n) + p=n;// no more factors + } + n /= p; + stageRadix.push_back(p); + stageRemainder.push_back(n); + }while(n>1); + } + std::vector<cpx_type> _twiddles; + + + const cpx_type twiddle(int i) { return _twiddles[i]; } +}; + +} + +template <typename T_Scalar, + typename T_traits=kissfft_utils::traits<T_Scalar> + > +class kissfft +{ + public: + typedef T_traits traits_type; + typedef typename traits_type::scalar_type scalar_type; + typedef typename traits_type::cpx_type cpx_type; + + kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() ) + :_nfft(nfft),_inverse(inverse),_traits(traits) + { + _traits.prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder); + } + + void transform(const cpx_type * src , cpx_type * dst) + { + kf_work(0, dst, src, 1,1); + } + + private: + void kf_work( int stage,cpx_type * Fout, const cpx_type * f, size_t fstride,size_t in_stride) + { + int p = _stageRadix[stage]; + int m = _stageRemainder[stage]; + cpx_type * Fout_beg = Fout; + cpx_type * Fout_end = Fout + p*m; + + if (m==1) { + do{ + *Fout = *f; + f += fstride*in_stride; + }while(++Fout != Fout_end ); + }else{ + do{ + // recursive call: + // DFT of size m*p performed by doing + // p instances of smaller DFTs of size m, + // each one takes a decimated version of the input + kf_work(stage+1, Fout , f, fstride*p,in_stride); + f += fstride*in_stride; + }while( (Fout += m) != Fout_end ); + } + + Fout=Fout_beg; + + // recombine the p smaller DFTs + switch (p) { + case 2: kf_bfly2(Fout,fstride,m); break; + case 3: kf_bfly3(Fout,fstride,m); break; + case 4: kf_bfly4(Fout,fstride,m); break; + case 5: kf_bfly5(Fout,fstride,m); break; + default: kf_bfly_generic(Fout,fstride,m,p); break; + } + } + + // these were #define macros in the original kiss_fft + void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;} + void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;} + void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;} + void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;} + void C_FIXDIV( cpx_type & ,int ) {} // NO-OP for float types + scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;} + scalar_type HALF_OF( const scalar_type & a) { return a*.5;} + void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;} + + void kf_bfly2( cpx_type * Fout, const size_t fstride, int m) + { + for (int k=0;k<m;++k) { + cpx_type t = Fout[m+k] * _traits.twiddle(k*fstride); + Fout[m+k] = Fout[k] - t; + Fout[k] += t; + } + } + + void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m) + { + cpx_type scratch[7]; + int negative_if_inverse = _inverse * -2 +1; + for (size_t k=0;k<m;++k) { + scratch[0] = Fout[k+m] * _traits.twiddle(k*fstride); + scratch[1] = Fout[k+2*m] * _traits.twiddle(k*fstride*2); + scratch[2] = Fout[k+3*m] * _traits.twiddle(k*fstride*3); + scratch[5] = Fout[k] - scratch[1]; + + Fout[k] += scratch[1]; + scratch[3] = scratch[0] + scratch[2]; + scratch[4] = scratch[0] - scratch[2]; + scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse ); + + Fout[k+2*m] = Fout[k] - scratch[3]; + Fout[k] += scratch[3]; + Fout[k+m] = scratch[5] + scratch[4]; + Fout[k+3*m] = scratch[5] - scratch[4]; + } + } + + void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m) + { + size_t k=m; + const size_t m2 = 2*m; + cpx_type *tw1,*tw2; + cpx_type scratch[5]; + cpx_type epi3; + epi3 = _twiddles[fstride*m]; + + tw1=tw2=&_twiddles[0]; + + do{ + C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3); + + C_MUL(scratch[1],Fout[m] , *tw1); + C_MUL(scratch[2],Fout[m2] , *tw2); + + C_ADD(scratch[3],scratch[1],scratch[2]); + C_SUB(scratch[0],scratch[1],scratch[2]); + tw1 += fstride; + tw2 += fstride*2; + + Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) ); + + C_MULBYSCALAR( scratch[0] , epi3.imag() ); + + C_ADDTO(*Fout,scratch[3]); + + Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); + + C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) ); + ++Fout; + }while(--k); + } + + void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m) + { + cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; + size_t u; + cpx_type scratch[13]; + cpx_type * twiddles = &_twiddles[0]; + cpx_type *tw; + cpx_type ya,yb; + ya = twiddles[fstride*m]; + yb = twiddles[fstride*2*m]; + + Fout0=Fout; + Fout1=Fout0+m; + Fout2=Fout0+2*m; + Fout3=Fout0+3*m; + Fout4=Fout0+4*m; + + tw=twiddles; + for ( u=0; u<m; ++u ) { + C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5); + scratch[0] = *Fout0; + + C_MUL(scratch[1] ,*Fout1, tw[u*fstride]); + C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]); + C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]); + C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]); + + C_ADD( scratch[7],scratch[1],scratch[4]); + C_SUB( scratch[10],scratch[1],scratch[4]); + C_ADD( scratch[8],scratch[2],scratch[3]); + C_SUB( scratch[9],scratch[2],scratch[3]); + + C_ADDTO( *Fout0, scratch[7]); + C_ADDTO( *Fout0, scratch[8]); + + scratch[5] = scratch[0] + cpx_type( + S_MUL(scratch[7].real(),ya.real() ) + S_MUL(scratch[8].real() ,yb.real() ), + S_MUL(scratch[7].imag(),ya.real()) + S_MUL(scratch[8].imag(),yb.real()) + ); + + scratch[6] = cpx_type( + S_MUL(scratch[10].imag(),ya.imag()) + S_MUL(scratch[9].imag(),yb.imag()), + -S_MUL(scratch[10].real(),ya.imag()) - S_MUL(scratch[9].real(),yb.imag()) + ); + + C_SUB(*Fout1,scratch[5],scratch[6]); + C_ADD(*Fout4,scratch[5],scratch[6]); + + scratch[11] = scratch[0] + + cpx_type( + S_MUL(scratch[7].real(),yb.real()) + S_MUL(scratch[8].real(),ya.real()), + S_MUL(scratch[7].imag(),yb.real()) + S_MUL(scratch[8].imag(),ya.real()) + ); + + scratch[12] = cpx_type( + -S_MUL(scratch[10].imag(),yb.imag()) + S_MUL(scratch[9].imag(),ya.imag()), + S_MUL(scratch[10].real(),yb.imag()) - S_MUL(scratch[9].real(),ya.imag()) + ); + + C_ADD(*Fout2,scratch[11],scratch[12]); + C_SUB(*Fout3,scratch[11],scratch[12]); + + ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; + } + } + + /* perform the butterfly for one stage of a mixed radix FFT */ + void kf_bfly_generic( + cpx_type * Fout, + const size_t fstride, + int m, + int p + ) + { + int u,k,q1,q; + cpx_type * twiddles = &_twiddles[0]; + cpx_type t; + int Norig = _nfft; + cpx_type scratchbuf[p]; + + for ( u=0; u<m; ++u ) { + k=u; + for ( q1=0 ; q1<p ; ++q1 ) { + scratchbuf[q1] = Fout[ k ]; + C_FIXDIV(scratchbuf[q1],p); + k += m; + } + + k=u; + for ( q1=0 ; q1<p ; ++q1 ) { + int twidx=0; + Fout[ k ] = scratchbuf[0]; + for (q=1;q<p;++q ) { + twidx += fstride * k; + if (twidx>=Norig) twidx-=Norig; + C_MUL(t,scratchbuf[q] , twiddles[twidx] ); + C_ADDTO( Fout[ k ] ,t); + } + k += m; + } + } + } + + int _nfft; + bool _inverse; + std::vector<cpx_type> _twiddles; + std::vector<int> _stageRadix; + std::vector<int> _stageRemainder; + traits_type _traits; +}; +#endif
--- a/modules-and-plug-ins/max-external/btrack~.xcodeproj/project.pbxproj Sun Jan 10 11:36:52 2016 +0000 +++ b/modules-and-plug-ins/max-external/btrack~.xcodeproj/project.pbxproj Sat Jun 18 10:50:06 2016 +0100 @@ -9,6 +9,7 @@ /* Begin PBXBuildFile section */ 22CF119B0EE9A8250054F513 /* btrack~.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 22CF119A0EE9A8250054F513 /* btrack~.cpp */; }; 22CF119E0EE9A82E0054F513 /* MaxAudioAPI.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 22CF119D0EE9A82E0054F513 /* MaxAudioAPI.framework */; }; + E3391F081D153E1200C7EB2E /* CircularBuffer.h in Headers */ = {isa = PBXBuildFile; fileRef = E3391F071D153E1200C7EB2E /* CircularBuffer.h */; }; E34F60F61A22A83400AD0770 /* BTrack.cpp in Sources */ = {isa = PBXBuildFile; fileRef = E34F60F21A22A83400AD0770 /* BTrack.cpp */; }; E34F60F71A22A83400AD0770 /* BTrack.h in Headers */ = {isa = PBXBuildFile; fileRef = E34F60F31A22A83400AD0770 /* BTrack.h */; }; E34F60F81A22A83400AD0770 /* OnsetDetectionFunction.cpp in Sources */ = {isa = PBXBuildFile; fileRef = E34F60F41A22A83400AD0770 /* OnsetDetectionFunction.cpp */; }; @@ -20,6 +21,7 @@ 22CF119A0EE9A8250054F513 /* btrack~.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "btrack~.cpp"; sourceTree = "<group>"; }; 22CF119D0EE9A82E0054F513 /* MaxAudioAPI.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = MaxAudioAPI.framework; path = "../../../SDKs/MaxSDK-6.1.4/c74support/msp-includes/MaxAudioAPI.framework"; sourceTree = SOURCE_ROOT; }; 2FBBEAE508F335360078DB84 /* btrack~.mxo */ = {isa = PBXFileReference; explicitFileType = wrapper.cfbundle; includeInIndex = 0; path = "btrack~.mxo"; sourceTree = BUILT_PRODUCTS_DIR; }; + E3391F071D153E1200C7EB2E /* CircularBuffer.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = CircularBuffer.h; sourceTree = "<group>"; }; E34F60F21A22A83400AD0770 /* BTrack.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = BTrack.cpp; sourceTree = "<group>"; }; E34F60F31A22A83400AD0770 /* BTrack.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = BTrack.h; sourceTree = "<group>"; }; E34F60F41A22A83400AD0770 /* OnsetDetectionFunction.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = OnsetDetectionFunction.cpp; sourceTree = "<group>"; }; @@ -65,6 +67,7 @@ E34F60F31A22A83400AD0770 /* BTrack.h */, E34F60F41A22A83400AD0770 /* OnsetDetectionFunction.cpp */, E34F60F51A22A83400AD0770 /* OnsetDetectionFunction.h */, + E3391F071D153E1200C7EB2E /* CircularBuffer.h */, ); name = src; path = ../../src; @@ -79,6 +82,7 @@ files = ( E34F60F91A22A83400AD0770 /* OnsetDetectionFunction.h in Headers */, E34F60F71A22A83400AD0770 /* BTrack.h in Headers */, + E3391F081D153E1200C7EB2E /* CircularBuffer.h in Headers */, ); runOnlyForDeploymentPostprocessing = 0; };
--- a/modules-and-plug-ins/python-module/example.py Sun Jan 10 11:36:52 2016 +0000 +++ b/modules-and-plug-ins/python-module/example.py Sat Jun 18 10:50:06 2016 +0100 @@ -5,7 +5,7 @@ import btrack # set the path to an audio file on your machine -audioFilePath = "/Users/adamstark/Documents/Audio/Databases/Hainsworth/audio/001.wav" +audioFilePath = "/path/to/your/audioFile.wav" # read the audio file audioData, fs, enc = wavread(audioFilePath) # extract audio from file
--- a/modules-and-plug-ins/python-module/setup.py Sun Jan 10 11:36:52 2016 +0000 +++ b/modules-and-plug-ins/python-module/setup.py Sat Jun 18 10:50:06 2016 +0100 @@ -6,11 +6,16 @@ name = 'btrack' sources = ['btrack_python_module.cpp','../../src/OnsetDetectionFunction.cpp','../../src/BTrack.cpp'] +sources.append ('../../libs/kiss_fft130/kiss_fft.c') + include_dirs = [ numpy.get_include(),'/usr/local/include' ] +include_dirs.append ('../../libs/kiss_fft130') + setup( name = 'BTrack', include_dirs = include_dirs, - ext_modules = [Extension(name, sources,libraries = ['fftw3','samplerate'],library_dirs = ['/usr/local/lib'])] + ext_modules = [Extension(name, sources,libraries = ['fftw3','samplerate'],library_dirs = ['/usr/local/lib'],define_macros=[ + ('USE_FFTW', None)])] ) \ No newline at end of file
--- a/modules-and-plug-ins/vamp-plugin/Makefile Sun Jan 10 11:36:52 2016 +0000 +++ b/modules-and-plug-ins/vamp-plugin/Makefile Sat Jun 18 10:50:06 2016 +0100 @@ -21,18 +21,16 @@ # Edit this to list the .cpp or .c files in your plugin project # -PLUGIN_SOURCES := BTrackVamp.cpp plugins.cpp ../../src/BTrack.cpp ../../src/OnsetDetectionFunction.cpp +PLUGIN_SOURCES := BTrackVamp.cpp plugins.cpp ../../src/BTrack.cpp ../../src/OnsetDetectionFunction.cpp # Edit this to list the .h files in your plugin project # -PLUGIN_HEADERS := BTrackVamp.h ../../src/BTrack.h ../../src/OnsetDetectionFunction.h - +PLUGIN_HEADERS := BTrackVamp.h ../../src/BTrack.h ../../src/OnsetDetectionFunction.h ../../src/CircularBuffer.h # Edit this to the location of the Vamp plugin SDK, relative to your # project directory # VAMP_SDK_DIR := /usr/local/lib/vamp-sdk - ## Uncomment these for an OS/X universal binary (32- and 64-bit Intel) ## supporting 10.5 or newer. Use this if you have OS/X 10.7 with the ## Xcode 4 command-line tools. @@ -40,10 +38,10 @@ CXX := g++ ## commented this out while I don't have both 32 and 64 bit versions of the libraries -#CXXFLAGS := -mmacosx-version-min=10.5 -arch i386 -arch x86_64 -I$(VAMP_SDK_DIR) -Wall -fPIC -CXXFLAGS := -mmacosx-version-min=10.5 -arch x86_64 -I$(VAMP_SDK_DIR) -Wall -fPIC +#CXXFLAGS := -mmacosx-version-min=10.11 -arch i386 -arch x86_64 -I$(VAMP_SDK_DIR) -Wall -fPIC +CXXFLAGS := -mmacosx-version-min=10.11 -arch x86_64 -I$(VAMP_SDK_DIR) -I/usr/local/include -DUSE_FFTW -Wall -fPIC PLUGIN_EXT := .dylib -LDFLAGS := $(CXXFLAGS) -dynamiclib -lfftw3 -lsamplerate -install_name $(PLUGIN_LIBRARY_NAME)$(PLUGIN_EXT) $(VAMP_SDK_DIR)/libvamp-sdk.a -exported_symbols_list vamp-plugin.list +LDFLAGS := $(CXXFLAGS) -dynamiclib -L/usr/local/lib -lsamplerate -lfftw3 -lstdc++ -install_name $(PLUGIN_LIBRARY_NAME)$(PLUGIN_EXT) $(VAMP_SDK_DIR)/libvamp-sdk.a -exported_symbols_list vamp-plugin.list ## Uncomment these for an OS/X universal binary (PPC and 32- and
--- a/src/BTrack.cpp Sun Jan 10 11:36:52 2016 +0000 +++ b/src/BTrack.cpp Sat Jun 18 10:50:06 2016 +0100 @@ -23,27 +23,50 @@ #include <algorithm> #include "BTrack.h" #include "samplerate.h" +#include <iostream> //======================================================================= -BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow) +BTrack::BTrack() + : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow) { - initialise(512, 1024); + initialise (512, 1024); } //======================================================================= -BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow) +BTrack::BTrack (int hopSize_) + : odf(hopSize_, 2*hopSize_, ComplexSpectralDifferenceHWR, HanningWindow) { - initialise(hopSize_, 2*hopSize_); + initialise (hopSize_, 2*hopSize_); } //======================================================================= -BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow) +BTrack::BTrack (int hopSize_, int frameSize_) + : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow) { - initialise(hopSize_, frameSize_); + initialise (hopSize_, frameSize_); } //======================================================================= -double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs) +BTrack::~BTrack() +{ +#ifdef USE_FFTW + // destroy fft plan + fftw_destroy_plan (acfForwardFFT); + fftw_destroy_plan (acfBackwardFFT); + fftw_free (complexIn); + fftw_free (complexOut); +#endif + +#ifdef USE_KISS_FFT + free (cfgForwards); + free (cfgBackwards); + delete [] fftIn; + delete [] fftOut; +#endif +} + +//======================================================================= +double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs) { double hop = (double) hopSize; double samplingFrequency = (double) fs; @@ -53,17 +76,17 @@ } //======================================================================= -double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs) +double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs) { long frameNum = (long) frameNumber; - return getBeatTimeInSeconds(frameNum, hopSize, fs); + return getBeatTimeInSeconds (frameNum, hopSize, fs); } //======================================================================= -void BTrack::initialise(int hopSize_, int frameSize_) +void BTrack::initialise (int hopSize_, int frameSize_) { double rayparam = 43; double pi = 3.14159265; @@ -83,13 +106,13 @@ // create rayleigh weighting vector - for (int n = 0;n < 128;n++) + for (int n = 0; n < 128; n++) { weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); } // initialise prev_delta - for (int i = 0;i < 41;i++) + for (int i = 0; i < 41; i++) { prevDelta[i] = 1; } @@ -118,10 +141,29 @@ // initialise algorithm given the hopsize setHopSize(hopSize_); + + + // Set up FFT for calculating the auto-correlation function + FFTLengthForACFCalculation = 1024; + +#ifdef USE_FFTW + complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data + complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data + + acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation + acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation +#endif + +#ifdef USE_KISS_FFT + fftIn = new kiss_fft_cpx[FFTLengthForACFCalculation]; + fftOut = new kiss_fft_cpx[FFTLengthForACFCalculation]; + cfgForwards = kiss_fft_alloc (FFTLengthForACFCalculation, 0, 0, 0); + cfgBackwards = kiss_fft_alloc (FFTLengthForACFCalculation, 1, 0, 0); +#endif } //======================================================================= -void BTrack::setHopSize(int hopSize_) +void BTrack::setHopSize (int hopSize_) { hopSize = hopSize_; onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size @@ -129,18 +171,17 @@ beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); // set size of onset detection function buffer - onsetDF.resize(onsetDFBufferSize); + onsetDF.resize (onsetDFBufferSize); // set size of cumulative score buffer - cumulativeScore.resize(onsetDFBufferSize); + cumulativeScore.resize (onsetDFBufferSize); // initialise df_buffer to zeros - for (int i = 0;i < onsetDFBufferSize;i++) + for (int i = 0; i < onsetDFBufferSize; i++) { onsetDF[i] = 0; cumulativeScore[i] = 0; - if ((i % ((int) round(beatPeriod))) == 0) { onsetDF[i] = 1; @@ -149,13 +190,13 @@ } //======================================================================= -void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_) +void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_) { // update the onset detection function object - odf.initialise(hopSize_, frameSize_); + odf.initialise (hopSize_, frameSize_); // update the hop size being used by the beat tracker - setHopSize(hopSize_); + setHopSize (hopSize_); } //======================================================================= @@ -183,23 +224,21 @@ } //======================================================================= -void BTrack::processAudioFrame(double *frame) +void BTrack::processAudioFrame (double* frame) { // calculate the onset detection function sample for the frame - double sample = odf.calculateOnsetDetectionFunctionSample(frame); - - + double sample = odf.calculateOnsetDetectionFunctionSample (frame); // process the new onset detection function sample in the beat tracking algorithm - processOnsetDetectionFunctionSample(sample); + processOnsetDetectionFunctionSample (sample); } //======================================================================= -void BTrack::processOnsetDetectionFunctionSample(double newSample) +void BTrack::processOnsetDetectionFunctionSample (double newSample) { // we need to ensure that the onset // detection function sample is positive - newSample = fabs(newSample); + newSample = fabs (newSample); // add a tiny constant to the sample to stop it from ever going // to zero. this is to avoid problems further down the line @@ -208,18 +247,12 @@ m0--; beatCounter--; beatDueInFrame = false; - - // move all samples back one step - for (int i=0;i < (onsetDFBufferSize-1);i++) - { - onsetDF[i] = onsetDF[i+1]; - } - + // add new sample at the end - onsetDF[onsetDFBufferSize-1] = newSample; + onsetDF.addSampleToEnd (newSample); // update cumulative score - updateCumulativeScore(newSample); + updateCumulativeScore (newSample); // if we are halfway between beats if (m0 == 0) @@ -239,7 +272,7 @@ } //======================================================================= -void BTrack::setTempo(double tempo) +void BTrack::setTempo (double tempo) { /////////// TEMPO INDICATION RESET ////////////////// @@ -306,7 +339,7 @@ } //======================================================================= -void BTrack::fixTempo(double tempo) +void BTrack::fixTempo (double tempo) { // firstly make sure tempo is between 80 and 160 bpm.. while (tempo > 160) @@ -346,52 +379,52 @@ void BTrack::resampleOnsetDetectionFunction() { float output[512]; + float input[onsetDFBufferSize]; for (int i = 0;i < onsetDFBufferSize;i++) { input[i] = (float) onsetDF[i]; } - - double src_ratio = 512.0/((double) onsetDFBufferSize); - int BUFFER_LEN = onsetDFBufferSize; - int output_len; - SRC_DATA src_data ; - - //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; - output_len = 512; - - src_data.data_in = input; - src_data.input_frames = BUFFER_LEN; - - src_data.src_ratio = src_ratio; - - src_data.data_out = output; - src_data.output_frames = output_len; - - src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); - - for (int i = 0;i < output_len;i++) - { - resampledOnsetDF[i] = (double) src_data.data_out[i]; - } + + double src_ratio = 512.0/((double) onsetDFBufferSize); + int BUFFER_LEN = onsetDFBufferSize; + int output_len; + SRC_DATA src_data ; + + //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; + output_len = 512; + + src_data.data_in = input; + src_data.input_frames = BUFFER_LEN; + + src_data.src_ratio = src_ratio; + + src_data.data_out = output; + src_data.output_frames = output_len; + + src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); + + for (int i = 0;i < output_len;i++) + { + resampledOnsetDF[i] = (double) src_data.data_out[i]; + } } //======================================================================= void BTrack::calculateTempo() { // adaptive threshold on input - adaptiveThreshold(resampledOnsetDF,512); + adaptiveThreshold (resampledOnsetDF,512); // calculate auto-correlation function of detection function - calculateBalancedACF(resampledOnsetDF); + calculateBalancedACF (resampledOnsetDF); // calculate output of comb filterbank calculateOutputOfCombFilterBank(); - // adaptive threshold on rcf - adaptiveThreshold(combFilterBankOutput,128); + adaptiveThreshold (combFilterBankOutput,128); int t_index; @@ -399,8 +432,8 @@ // calculate tempo observation vector from beat period observation vector for (int i = 0;i < 41;i++) { - t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80))); - t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160))); + t_index = (int) round (tempoToLagFactor / ((double) ((2*i)+80))); + t_index2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160))); tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1]; @@ -425,7 +458,7 @@ maxval = -1; for (int i = 0;i < 41;i++) { - curval = prevDelta[i]*tempoTransitionMatrix[i][j]; + curval = prevDelta[i] * tempoTransitionMatrix[i][j]; if (curval > maxval) { @@ -433,7 +466,7 @@ } } - delta[j] = maxval*tempoObservationVector[j]; + delta[j] = maxval * tempoObservationVector[j]; } @@ -453,16 +486,16 @@ prevDelta[j] = delta[j]; } - beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); + beatPeriod = round ((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); if (beatPeriod > 0) { - estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod); + estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod); } } //======================================================================= -void BTrack::adaptiveThreshold(double *x,int N) +void BTrack::adaptiveThreshold (double* x, int N) { int i = 0; int k,t = 0; @@ -476,23 +509,23 @@ // find threshold for first 't' samples, where a full average cannot be computed yet for (i = 0;i <= t;i++) { - k = std::min((i+p_pre),N); - x_thresh[i] = calculateMeanOfArray(x,1,k); + k = std::min ((i+p_pre),N); + x_thresh[i] = calculateMeanOfArray (x,1,k); } // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] for (i = t+1;i < N-p_post;i++) { - x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post); + x_thresh[i] = calculateMeanOfArray (x,i-p_pre,i+p_post); } // for last few samples calculate threshold, again, not enough samples to do as above for (i = N-p_post;i < N;i++) { - k = std::max((i-p_post),1); - x_thresh[i] = calculateMeanOfArray(x,k,N); + k = std::max ((i-p_post),1); + x_thresh[i] = calculateMeanOfArray (x,k,N); } // subtract the threshold from the detection function and check that it is not less than 0 - for (i = 0;i < N;i++) + for (i = 0; i < N; i++) { x[i] = x[i] - x_thresh[i]; if (x[i] < 0) @@ -514,11 +547,11 @@ numelem = 4; - for (int i = 2;i <= 127;i++) // max beat period + for (int i = 2; i <= 127; i++) // max beat period { - for (int a = 1;a <= numelem;a++) // number of comb elements + for (int a = 1; a <= numelem; a++) // number of comb elements { - for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements + for (int b = 1-a; b <= a-1; b++) // general state using normalisation of comb elements { combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row } @@ -527,29 +560,99 @@ } //======================================================================= -void BTrack::calculateBalancedACF(double *onsetDetectionFunction) +void BTrack::calculateBalancedACF (double* onsetDetectionFunction) { - int l, n = 0; - double sum, tmp; - - // for l lags from 0-511 - for (l = 0;l < 512;l++) - { - sum = 0; - - // for n samples from 0 - (512-lag) - for (n = 0;n < (512-l);n++) - { - tmp = onsetDetectionFunction[n] * onsetDetectionFunction[n+l]; // multiply current sample n by sample (n+l) - sum = sum + tmp; // add to sum - } - - acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer - } + int onsetDetectionFunctionLength = 512; + +#ifdef USE_FFTW + // copy into complex array and zero pad + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + if (i < onsetDetectionFunctionLength) + { + complexIn[i][0] = onsetDetectionFunction[i]; + complexIn[i][1] = 0.0; + } + else + { + complexIn[i][0] = 0.0; + complexIn[i][1] = 0.0; + } + } + + // perform the fft + fftw_execute (acfForwardFFT); + + // multiply by complex conjugate + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1]; + complexOut[i][1] = 0.0; + } + + // perform the ifft + fftw_execute (acfBackwardFFT); + +#endif + +#ifdef USE_KISS_FFT + // copy into complex array and zero pad + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + if (i < onsetDetectionFunctionLength) + { + fftIn[i].r = onsetDetectionFunction[i]; + fftIn[i].i = 0.0; + } + else + { + fftIn[i].r = 0.0; + fftIn[i].i = 0.0; + } + } + + // execute kiss fft + kiss_fft (cfgForwards, fftIn, fftOut); + + // multiply by complex conjugate + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + fftOut[i].r = fftOut[i].r * fftOut[i].r + fftOut[i].i * fftOut[i].i; + fftOut[i].i = 0.0; + } + + // perform the ifft + kiss_fft (cfgBackwards, fftOut, fftIn); + +#endif + + double lag = 512; + + for (int i = 0; i < 512; i++) + { +#ifdef USE_FFTW + // calculate absolute value of result + double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]); +#endif + +#ifdef USE_KISS_FFT + // calculate absolute value of result + double absValue = sqrt (fftIn[i].r * fftIn[i].r + fftIn[i].i * fftIn[i].i); +#endif + // divide by inverse lad to deal with scale bias towards small lags + acf[i] = absValue / lag; + + // this division by 1024 is technically unnecessary but it ensures the algorithm produces + // exactly the same ACF output as the old time domain implementation. The time difference is + // minimal so I decided to keep it + acf[i] = acf[i] / 1024.; + + lag = lag - 1.; + } } //======================================================================= -double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex) +double BTrack::calculateMeanOfArray (double* array, int startIndex, int endIndex) { int i; double sum = 0; @@ -557,7 +660,7 @@ int length = endIndex - startIndex; // find sum - for (i = startIndex;i < endIndex;i++) + for (i = startIndex; i < endIndex; i++) { sum = sum + array[i]; } @@ -573,11 +676,11 @@ } //======================================================================= -void BTrack::normaliseArray(double *array,int N) +void BTrack::normaliseArray (double* array, int N) { double sum = 0; - for (int i = 0;i < N;i++) + for (int i = 0; i < N; i++) { if (array[i] > 0) { @@ -587,7 +690,7 @@ if (sum > 0) { - for (int i = 0;i < N;i++) + for (int i = 0; i < N; i++) { array[i] = array[i] / sum; } @@ -595,31 +698,30 @@ } //======================================================================= -void BTrack::updateCumulativeScore(double odfSample) +void BTrack::updateCumulativeScore (double odfSample) { int start, end, winsize; double max; - start = onsetDFBufferSize - round(2*beatPeriod); - end = onsetDFBufferSize - round(beatPeriod/2); + start = onsetDFBufferSize - round (2 * beatPeriod); + end = onsetDFBufferSize - round (beatPeriod / 2); winsize = end-start+1; double w1[winsize]; double v = -2*beatPeriod; double wcumscore; - // create window - for (int i = 0;i < winsize;i++) + for (int i = 0; i < winsize; i++) { - w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); + w1[i] = exp((-1 * pow (tightness * log (-v / beatPeriod), 2)) / 2); v = v+1; } // calculate new cumulative score value max = 0; int n = 0; - for (int i=start;i <= end;i++) + for (int i=start; i <= end; i++) { wcumscore = cumulativeScore[i]*w1[n]; @@ -630,18 +732,9 @@ n++; } - - // shift cumulative score back one - for (int i = 0;i < (onsetDFBufferSize-1);i++) - { - cumulativeScore[i] = cumulativeScore[i+1]; - } - - // add new value to cumulative score - cumulativeScore[onsetDFBufferSize-1] = ((1-alpha)*odfSample) + (alpha*max); - - latestCumulativeScoreValue = cumulativeScore[onsetDFBufferSize-1]; - + latestCumulativeScoreValue = ((1 - alpha) * odfSample) + (alpha * max); + + cumulativeScore.addSampleToEnd (latestCumulativeScoreValue); } //======================================================================= @@ -650,6 +743,7 @@ int windowSize = (int) beatPeriod; double futureCumulativeScore[onsetDFBufferSize + windowSize]; double w2[windowSize]; + // copy cumscore to first part of fcumscore for (int i = 0;i < onsetDFBufferSize;i++) { @@ -658,7 +752,7 @@ // create future window double v = 1; - for (int i = 0;i < windowSize;i++) + for (int i = 0; i < windowSize; i++) { w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); v++; @@ -677,16 +771,14 @@ v = v+1; } - - // calculate future cumulative score double max; int n; double wcumscore; - for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) + for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) { - start = i - round(2*beatPeriod); - end = i - round(beatPeriod/2); + start = i - round (2*beatPeriod); + end = i - round (beatPeriod/2); max = 0; n = 0; @@ -704,12 +796,11 @@ futureCumulativeScore[i] = max; } - // predict beat max = 0; n = 0; - for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) + for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) { wcumscore = futureCumulativeScore[i]*w2[n]; @@ -723,7 +814,5 @@ } // set next prediction time - m0 = beatCounter+round(beatPeriod/2); - - + m0 = beatCounter + round (beatPeriod / 2); } \ No newline at end of file
--- a/src/BTrack.h Sun Jan 10 11:36:52 2016 +0000 +++ b/src/BTrack.h Sat Jun 18 10:50:06 2016 +0100 @@ -23,6 +23,7 @@ #define __BTRACK_H #include "OnsetDetectionFunction.h" +#include "CircularBuffer.h" #include <vector> //======================================================================= @@ -42,32 +43,35 @@ /** Constructor assuming frame size will be double the hopSize * @param hopSize the hop size in audio samples */ - BTrack(int hopSize_); + BTrack (int hopSize_); /** Constructor taking both hopSize and frameSize * @param hopSize the hop size in audio samples * @param frameSize the frame size in audio samples */ - BTrack(int hopSize_,int frameSize_); + BTrack (int hopSize_, int frameSize_); + + /** Destructor */ + ~BTrack(); //======================================================================= /** Updates the hop and frame size used by the beat tracker * @param hopSize the hop size in audio samples * @param frameSize the frame size in audio samples */ - void updateHopAndFrameSize(int hopSize_,int frameSize_); + void updateHopAndFrameSize (int hopSize_, int frameSize_); //======================================================================= /** Process a single audio frame * @param frame a pointer to an array containing an audio frame. The number of samples should * match the frame size that the algorithm was initialised with. */ - void processAudioFrame(double *frame); + void processAudioFrame (double* frame); /** Add new onset detection function sample to buffer and apply beat tracking * @param sample an onset detection function sample */ - void processOnsetDetectionFunctionSample(double sample); + void processOnsetDetectionFunctionSample (double sample); //======================================================================= /** @returns the current hop size being used by the beat tracker */ @@ -86,13 +90,13 @@ /** Set the tempo of the beat tracker * @param tempo the tempo in beats per minute (bpm) */ - void setTempo(double tempo); + void setTempo (double tempo); /** Fix tempo to roughly around some value, so that the algorithm will only try to track * tempi around the given tempo * @param tempo the tempo in beats per minute (bpm) */ - void fixTempo(double tempo); + void fixTempo (double tempo); /** Tell the algorithm to not fix the tempo anymore */ void doNotFixTempo(); @@ -105,7 +109,7 @@ * @param fs the sampling frequency in Hz * @returns a beat time in seconds */ - static double getBeatTimeInSeconds(long frameNumber,int hopSize,int fs); + static double getBeatTimeInSeconds (long frameNumber, int hopSize, int fs); /** Calculates a beat time in seconds, given the frame number, hop size and sampling frequency. * This version uses an int to represent the frame number @@ -114,7 +118,7 @@ * @param fs the sampling frequency in Hz * @returns a beat time in seconds */ - static double getBeatTimeInSeconds(int frameNumber,int hopSize,int fs); + static double getBeatTimeInSeconds (int frameNumber, int hopSize, int fs); private: @@ -123,12 +127,12 @@ * @param hopSize_ the hop size in audio samples * @param frameSize_ the frame size in audio samples */ - void initialise(int hopSize_,int frameSize_); + void initialise (int hopSize_, int frameSize_); /** Initialise with hop size and set all array sizes accordingly * @param hopSize_ the hop size in audio samples */ - void setHopSize(int hopSize_); + void setHopSize (int hopSize_); /** Resamples the onset detection function from an arbitrary number of samples to 512 */ void resampleOnsetDetectionFunction(); @@ -136,7 +140,7 @@ /** Updates the cumulative score function with a new onset detection function sample * @param odfSample an onset detection function sample */ - void updateCumulativeScore(double odfSample); + void updateCumulativeScore (double odfSample); /** Predicts the next beat, based upon the internal program state */ void predictBeat(); @@ -149,7 +153,7 @@ * @param x a pointer to an array containing onset detection function samples * @param N the length of the array, x */ - void adaptiveThreshold(double *x,int N); + void adaptiveThreshold (double* x, int N); /** Calculates the mean of values in an array between index locations [startIndex,endIndex] * @param array a pointer to an array that contains the values we wish to find the mean from @@ -157,18 +161,18 @@ * @param endIndex the final index to which we would like to calculate the mean * @returns the mean of the sub-section of the array */ - double calculateMeanOfArray(double *array,int startIndex,int endIndex); + double calculateMeanOfArray (double* array, int startIndex, int endIndex); /** Normalises a given array * @param array a pointer to the array we wish to normalise * @param N the length of the array */ - void normaliseArray(double *array,int N); + void normaliseArray (double* array, int N); /** Calculates the balanced autocorrelation of the smoothed onset detection function * @param onsetDetectionFunction a pointer to an array containing the onset detection function */ - void calculateBalancedACF(double *onsetDetectionFunction); + void calculateBalancedACF (double* onsetDetectionFunction); /** Calculates the output of the comb filter bank */ void calculateOutputOfCombFilterBank(); @@ -181,54 +185,50 @@ //======================================================================= // buffers - std::vector<double> onsetDF; /**< to hold onset detection function */ - std::vector<double> cumulativeScore; /**< to hold cumulative score */ + CircularBuffer onsetDF; /**< to hold onset detection function */ + CircularBuffer cumulativeScore; /**< to hold cumulative score */ double resampledOnsetDF[512]; /**< to hold resampled detection function */ - double acf[512]; /**< to hold autocorrelation function */ - double weightingVector[128]; /**< to hold weighting vector */ - double combFilterBankOutput[128]; /**< to hold comb filter output */ double tempoObservationVector[41]; /**< to hold tempo version of comb filter output */ - double delta[41]; /**< to hold final tempo candidate array */ double prevDelta[41]; /**< previous delta */ double prevDeltaFixed[41]; /**< fixed tempo version of previous delta */ - double tempoTransitionMatrix[41][41]; /**< tempo transition matrix */ - //======================================================================= // parameters + double tightness; /**< the tightness of the weighting used to calculate cumulative score */ + double alpha; /**< the mix between the current detection function sample and the cumulative score's "momentum" */ + double beatPeriod; /**< the beat period, in detection function samples */ + double tempo; /**< the tempo in beats per minute */ + double estimatedTempo; /**< the current tempo estimation being used by the algorithm */ + double latestCumulativeScoreValue; /**< holds the latest value of the cumulative score function */ + double tempoToLagFactor; /**< factor for converting between lag and tempo */ + int m0; /**< indicates when the next point to predict the next beat is */ + int beatCounter; /**< keeps track of when the next beat is - will be zero when the beat is due, and is set elsewhere in the algorithm to be positive once a beat prediction is made */ + int hopSize; /**< the hop size being used by the algorithm */ + int onsetDFBufferSize; /**< the onset detection function buffer size */ + bool tempoFixed; /**< indicates whether the tempo should be fixed or not */ + bool beatDueInFrame; /**< indicates whether a beat is due in the current frame */ + int FFTLengthForACFCalculation; /**< the FFT length for the auto-correlation function calculation */ - double tightness; /**< the tightness of the weighting used to calculate cumulative score */ +#ifdef USE_FFTW + fftw_plan acfForwardFFT; /**< forward fftw plan for calculating auto-correlation function */ + fftw_plan acfBackwardFFT; /**< inverse fftw plan for calculating auto-correlation function */ + fftw_complex* complexIn; /**< to hold complex fft values for input */ + fftw_complex* complexOut; /**< to hold complex fft values for output */ +#endif - double alpha; /**< the mix between the current detection function sample and the cumulative score's "momentum" */ - - double beatPeriod; /**< the beat period, in detection function samples */ - - double tempo; /**< the tempo in beats per minute */ - - double estimatedTempo; /**< the current tempo estimation being used by the algorithm */ - - double latestCumulativeScoreValue; /**< holds the latest value of the cumulative score function */ - - double tempoToLagFactor; /**< factor for converting between lag and tempo */ - - int m0; /**< indicates when the next point to predict the next beat is */ - - int beatCounter; /**< keeps track of when the next beat is - will be zero when the beat is due, and is set elsewhere in the algorithm to be positive once a beat prediction is made */ - - int hopSize; /**< the hop size being used by the algorithm */ - - int onsetDFBufferSize; /**< the onset detection function buffer size */ - - bool tempoFixed; /**< indicates whether the tempo should be fixed or not */ - - bool beatDueInFrame; /**< indicates whether a beat is due in the current frame */ +#ifdef USE_KISS_FFT + kiss_fft_cfg cfgForwards; /**< Kiss FFT configuration */ + kiss_fft_cfg cfgBackwards; /**< Kiss FFT configuration */ + kiss_fft_cpx* fftIn; /**< FFT input samples, in complex form */ + kiss_fft_cpx* fftOut; /**< FFT output samples, in complex form */ +#endif };
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CircularBuffer.h Sat Jun 18 10:50:06 2016 +0100 @@ -0,0 +1,70 @@ +//======================================================================= +/** @file CircularBuffer.h + * @brief A class for calculating onset detection functions + * @author Adam Stark + * @copyright Copyright (C) 2008-2014 Queen Mary University of London + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ +//======================================================================= + +#ifndef CircularBuffer_h +#define CircularBuffer_h + +#include <vector> + +//======================================================================= +/** A circular buffer that allows you to add new samples to the end + * whilst removing them from the beginning. This is implemented in an + * efficient way which doesn't involve any memory allocation + */ +class CircularBuffer +{ +public: + + /** Constructor */ + CircularBuffer() + : writeIndex (0) + { + + } + + /** Access the ith element in the buffer */ + double &operator[] (int i) + { + int index = (i + writeIndex) % buffer.size(); + return buffer[index]; + } + + /** Add a new sample to the end of the buffer */ + void addSampleToEnd (double v) + { + buffer[writeIndex] = v; + writeIndex = (writeIndex + 1) % buffer.size(); + } + + /** Resize the buffer */ + void resize (int size) + { + buffer.resize (size); + writeIndex = 0; + } + +private: + + std::vector<double> buffer; + int writeIndex; +}; + +#endif /* CircularBuffer_hpp */
--- a/src/OnsetDetectionFunction.cpp Sun Jan 10 11:36:52 2016 +0000 +++ b/src/OnsetDetectionFunction.cpp Sat Jun 18 10:50:06 2016 +0100 @@ -22,9 +22,9 @@ #include <math.h> #include "OnsetDetectionFunction.h" - //======================================================================= -OnsetDetectionFunction::OnsetDetectionFunction(int hopSize_,int frameSize_) : onsetDetectionFunctionType(ComplexSpectralDifferenceHWR), windowType(HanningWindow) +OnsetDetectionFunction::OnsetDetectionFunction (int hopSize_,int frameSize_) + : onsetDetectionFunctionType (ComplexSpectralDifferenceHWR), windowType (HanningWindow) { // indicate that we have not initialised yet initialised = false; @@ -33,11 +33,12 @@ pi = 3.14159265358979; // initialise with arguments to constructor - initialise(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow); + initialise (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow); } //======================================================================= -OnsetDetectionFunction::OnsetDetectionFunction(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType_) : onsetDetectionFunctionType(ComplexSpectralDifferenceHWR), windowType(HanningWindow) +OnsetDetectionFunction::OnsetDetectionFunction(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType_) + : onsetDetectionFunctionType (ComplexSpectralDifferenceHWR), windowType (HanningWindow) { // indicate that we have not initialised yet initialised = false; @@ -46,7 +47,7 @@ pi = 3.14159265358979; // initialise with arguments to constructor - initialise(hopSize_,frameSize_,onsetDetectionFunctionType_,windowType_); + initialise (hopSize_, frameSize_, onsetDetectionFunctionType_, windowType_); } @@ -55,33 +56,21 @@ { if (initialised) { - // destroy fft plan - fftw_destroy_plan(p); - fftw_free(complexIn); - fftw_free(complexOut); + freeFFT(); } } //======================================================================= -void OnsetDetectionFunction::initialise(int hopSize_,int frameSize_) +void OnsetDetectionFunction::initialise (int hopSize_, int frameSize_) { // use the already initialised onset detection function and window type and // pass the new frame and hop size to the main initialisation function - initialise(hopSize_, frameSize_, onsetDetectionFunctionType, windowType); + initialise (hopSize_, frameSize_, onsetDetectionFunctionType, windowType); } //======================================================================= void OnsetDetectionFunction::initialise(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType_) { - if (initialised) // if we have already initialised FFT plan - { - // destroy fft plan - fftw_destroy_plan(p); - fftw_free(complexIn); - fftw_free(complexOut); - - } - hopSize = hopSize_; // set hopsize frameSize = frameSize_; // set framesize @@ -89,17 +78,18 @@ windowType = windowType_; // set window type // initialise buffers - frame.resize(frameSize); - window.resize(frameSize); - magSpec.resize(frameSize); - prevMagSpec.resize(frameSize); - phase.resize(frameSize); - prevPhase.resize(frameSize); - prevPhase2.resize(frameSize); + frame.resize (frameSize); + window.resize (frameSize); + magSpec.resize (frameSize); + prevMagSpec.resize (frameSize); + phase.resize (frameSize); + prevPhase.resize (frameSize); + prevPhase2.resize (frameSize); // set the window to the specified type - switch (windowType){ + switch (windowType) + { case RectangularWindow: calculateRectangularWindow(); // Rectangular window break; @@ -120,7 +110,7 @@ } // initialise previous magnitude spectrum to zero - for (int i = 0;i < frameSize;i++) + for (int i = 0; i < frameSize; i++) { prevMagSpec[i] = 0.0; prevPhase[i] = 0.0; @@ -130,22 +120,63 @@ prevEnergySum = 0.0; // initialise previous energy sum value to zero - /* Init fft */ - complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * frameSize); // complex array to hold fft data - complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * frameSize); // complex array to hold fft data - p = fftw_plan_dft_1d(frameSize, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation - - initialised = true; + initialiseFFT(); } //======================================================================= -void OnsetDetectionFunction :: setOnsetDetectionFunctionType(int onsetDetectionFunctionType_) +void OnsetDetectionFunction::initialiseFFT() +{ + if (initialised) // if we have already initialised FFT plan + { + freeFFT(); + } + +#ifdef USE_FFTW + complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * frameSize); // complex array to hold fft data + complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * frameSize); // complex array to hold fft data + p = fftw_plan_dft_1d (frameSize, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation +#endif + +#ifdef USE_KISS_FFT + complexOut.resize (frameSize); + + for (int i = 0; i < frameSize;i++) + { + complexOut[i].resize(2); + } + + fftIn = new kiss_fft_cpx[frameSize]; + fftOut = new kiss_fft_cpx[frameSize]; + cfg = kiss_fft_alloc (frameSize, 0, 0, 0); +#endif + + initialised = true; +} + +//======================================================================= +void OnsetDetectionFunction::freeFFT() +{ +#ifdef USE_FFTW + fftw_destroy_plan (p); + fftw_free (complexIn); + fftw_free (complexOut); +#endif + +#ifdef USE_KISS_FFT + free (cfg); + delete [] fftIn; + delete [] fftOut; +#endif +} + +//======================================================================= +void OnsetDetectionFunction::setOnsetDetectionFunctionType (int onsetDetectionFunctionType_) { onsetDetectionFunctionType = onsetDetectionFunctionType_; // set detection function type } //======================================================================= -double OnsetDetectionFunction :: calculateOnsetDetectionFunctionSample(double *buffer) +double OnsetDetectionFunction::calculateOnsetDetectionFunctionSample (double* buffer) { double odfSample; @@ -163,7 +194,8 @@ j++; } - switch (onsetDetectionFunctionType){ + switch (onsetDetectionFunctionType) + { case EnergyEnvelope: { // calculate energy envelope detection function sample @@ -235,21 +267,43 @@ //======================================================================= -void OnsetDetectionFunction :: performFFT() +void OnsetDetectionFunction::performFFT() { - int fsize2 = (frameSize/2); - + int fsize2 = (frameSize/2); + +#ifdef USE_FFTW // window frame and copy to complex array, swapping the first and second half of the signal for (int i = 0;i < fsize2;i++) { - complexIn[i][0] = frame[i+fsize2] * window[i+fsize2]; + complexIn[i][0] = frame[i + fsize2] * window[i + fsize2]; complexIn[i][1] = 0.0; complexIn[i+fsize2][0] = frame[i] * window[i]; complexIn[i+fsize2][1] = 0.0; } // perform the fft - fftw_execute(p); + fftw_execute (p); +#endif + +#ifdef USE_KISS_FFT + for (int i = 0; i < fsize2; i++) + { + fftIn[i].r = frame[i + fsize2] * window[i + fsize2]; + fftIn[i].i = 0.0; + fftIn[i + fsize2].r = frame[i] * window[i]; + fftIn[i + fsize2].i = 0.0; + } + + // execute kiss fft + kiss_fft (cfg, fftIn, fftOut); + + // store real and imaginary parts of FFT + for (int i = 0; i < frameSize; i++) + { + complexOut[i][0] = fftOut[i].r; + complexOut[i][1] = fftOut[i].i; + } +#endif } //////////////////////////////////////////////////////////////////////////////////////////////// @@ -257,7 +311,7 @@ ////////////////////////////// Methods for Detection Functions ///////////////////////////////// //======================================================================= -double OnsetDetectionFunction :: energyEnvelope() +double OnsetDetectionFunction::energyEnvelope() { double sum; @@ -266,14 +320,14 @@ // sum the squares of the samples for (int i = 0;i < frameSize;i++) { - sum = sum + (frame[i]*frame[i]); + sum = sum + (frame[i] * frame[i]); } return sum; // return sum } //======================================================================= -double OnsetDetectionFunction :: energyDifference() +double OnsetDetectionFunction::energyDifference() { double sum; double sample; @@ -281,9 +335,9 @@ sum = 0; // initialise sum // sum the squares of the samples - for (int i = 0;i < frameSize;i++) + for (int i = 0; i < frameSize; i++) { - sum = sum + (frame[i]*frame[i]); + sum = sum + (frame[i] * frame[i]); } sample = sum - prevEnergySum; // sample is first order difference in energy @@ -301,7 +355,7 @@ } //======================================================================= -double OnsetDetectionFunction :: spectralDifference() +double OnsetDetectionFunction::spectralDifference() { double diff; double sum; @@ -312,17 +366,17 @@ // compute first (N/2)+1 mag values for (int i = 0;i < (frameSize/2)+1;i++) { - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0], 2) + pow (complexOut[i][1], 2)); } // mag spec symmetric above (N/2)+1 so copy previous values - for (int i = (frameSize/2)+1;i < frameSize;i++) + for (int i = (frameSize/2)+1; i < frameSize; i++) { magSpec[i] = magSpec[frameSize-i]; } sum = 0; // initialise sum to zero - for (int i = 0;i < frameSize;i++) + for (int i = 0; i < frameSize; i++) { // calculate difference diff = magSpec[i] - prevMagSpec[i]; @@ -334,7 +388,7 @@ } // add difference to sum - sum = sum+diff; + sum = sum + diff; // store magnitude spectrum bin for next detection function sample calculation prevMagSpec[i] = magSpec[i]; @@ -344,7 +398,7 @@ } //======================================================================= -double OnsetDetectionFunction :: spectralDifferenceHWR() +double OnsetDetectionFunction::spectralDifferenceHWR() { double diff; double sum; @@ -353,9 +407,9 @@ performFFT(); // compute first (N/2)+1 mag values - for (int i = 0;i < (frameSize/2)+1;i++) + for (int i = 0;i < (frameSize/2) + 1; i++) { - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0],2) + pow (complexOut[i][1],2)); } // mag spec symmetric above (N/2)+1 so copy previous values for (int i = (frameSize/2)+1;i < frameSize;i++) @@ -377,8 +431,6 @@ sum = sum+diff; } - - // store magnitude spectrum bin for next detection function sample calculation prevMagSpec[i] = magSpec[i]; } @@ -388,7 +440,7 @@ //======================================================================= -double OnsetDetectionFunction :: phaseDeviation() +double OnsetDetectionFunction::phaseDeviation() { double dev,pdev; double sum; @@ -402,17 +454,17 @@ for (int i = 0;i < frameSize;i++) { // calculate phase value - phase[i] = atan2(complexOut[i][1],complexOut[i][0]); + phase[i] = atan2 (complexOut[i][1], complexOut[i][0]); // calculate magnitude value - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0],2) + pow (complexOut[i][1],2)); // if bin is not just a low energy bin then examine phase deviation if (magSpec[i] > 0.1) { dev = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; // phase deviation - pdev = princarg(dev); // wrap into [-pi,pi] range + pdev = princarg (dev); // wrap into [-pi,pi] range // make all values positive if (pdev < 0) @@ -433,7 +485,7 @@ } //======================================================================= -double OnsetDetectionFunction :: complexSpectralDifference() +double OnsetDetectionFunction::complexSpectralDifference() { double phaseDeviation; double sum; @@ -448,16 +500,16 @@ for (int i = 0;i < frameSize;i++) { // calculate phase value - phase[i] = atan2(complexOut[i][1],complexOut[i][0]); + phase[i] = atan2 (complexOut[i][1], complexOut[i][0]); // calculate magnitude value - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0],2) + pow(complexOut[i][1],2)); // phase deviation - phaseDeviation = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; + phaseDeviation = phase[i] - (2 * prevPhase[i]) + prevPhase2[i]; // calculate complex spectral difference for the current spectral bin - csd = sqrt(pow(magSpec[i], 2) + pow(prevMagSpec[i], 2) - 2 * magSpec[i] * prevMagSpec[i] * cos(phaseDeviation)); + csd = sqrt (pow (magSpec[i], 2) + pow (prevMagSpec[i], 2) - 2 * magSpec[i] * prevMagSpec[i] * cos (phaseDeviation)); // add to sum sum = sum + csd; @@ -472,7 +524,7 @@ } //======================================================================= -double OnsetDetectionFunction :: complexSpectralDifferenceHWR() +double OnsetDetectionFunction::complexSpectralDifferenceHWR() { double phaseDeviation; double sum; @@ -488,13 +540,13 @@ for (int i = 0;i < frameSize;i++) { // calculate phase value - phase[i] = atan2(complexOut[i][1],complexOut[i][0]); + phase[i] = atan2 (complexOut[i][1], complexOut[i][0]); // calculate magnitude value - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0],2) + pow(complexOut[i][1],2)); // phase deviation - phaseDeviation = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; + phaseDeviation = phase[i] - (2 * prevPhase[i]) + prevPhase2[i]; // calculate magnitude difference (real part of Euclidean distance between complex frames) magnitudeDifference = magSpec[i] - prevMagSpec[i]; @@ -503,7 +555,7 @@ if (magnitudeDifference > 0) { // calculate complex spectral difference for the current spectral bin - csd = sqrt(pow(magSpec[i], 2) + pow(prevMagSpec[i], 2) - 2 * magSpec[i] * prevMagSpec[i] * cos(phaseDeviation)); + csd = sqrt (pow (magSpec[i], 2) + pow (prevMagSpec[i], 2) - 2 * magSpec[i] * prevMagSpec[i] * cos (phaseDeviation)); // add to sum sum = sum + csd; @@ -520,7 +572,7 @@ //======================================================================= -double OnsetDetectionFunction :: highFrequencyContent() +double OnsetDetectionFunction::highFrequencyContent() { double sum; @@ -530,13 +582,13 @@ sum = 0; // initialise sum to zero // compute phase values from fft output and sum deviations - for (int i = 0;i < frameSize;i++) + for (int i = 0; i < frameSize; i++) { // calculate magnitude value - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0],2) + pow (complexOut[i][1],2)); - sum = sum + (magSpec[i]*((double) (i+1))); + sum = sum + (magSpec[i] * ((double) (i+1))); // store values for next calculation prevMagSpec[i] = magSpec[i]; @@ -546,7 +598,7 @@ } //======================================================================= -double OnsetDetectionFunction :: highFrequencySpectralDifference() +double OnsetDetectionFunction::highFrequencySpectralDifference() { double sum; double mag_diff; @@ -560,7 +612,7 @@ for (int i = 0;i < frameSize;i++) { // calculate magnitude value - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0],2) + pow (complexOut[i][1],2)); // calculate difference mag_diff = magSpec[i] - prevMagSpec[i]; @@ -570,7 +622,7 @@ mag_diff = -mag_diff; } - sum = sum + (mag_diff*((double) (i+1))); + sum = sum + (mag_diff * ((double) (i+1))); // store values for next calculation prevMagSpec[i] = magSpec[i]; @@ -580,7 +632,7 @@ } //======================================================================= -double OnsetDetectionFunction :: highFrequencySpectralDifferenceHWR() +double OnsetDetectionFunction::highFrequencySpectralDifferenceHWR() { double sum; double mag_diff; @@ -594,14 +646,14 @@ for (int i = 0;i < frameSize;i++) { // calculate magnitude value - magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); + magSpec[i] = sqrt (pow (complexOut[i][0],2) + pow (complexOut[i][1],2)); // calculate difference mag_diff = magSpec[i] - prevMagSpec[i]; if (mag_diff > 0) { - sum = sum + (mag_diff*((double) (i+1))); + sum = sum + (mag_diff * ((double) (i+1))); } // store values for next calculation @@ -617,21 +669,21 @@ ////////////////////////////// Methods to Calculate Windows //////////////////////////////////// //======================================================================= -void OnsetDetectionFunction :: calculateHanningWindow() +void OnsetDetectionFunction::calculateHanningWindow() { double N; // variable to store framesize minus 1 N = (double) (frameSize-1); // framesize minus 1 // Hanning window calculation - for (int n = 0;n < frameSize;n++) + for (int n = 0; n < frameSize; n++) { - window[n] = 0.5*(1-cos(2*pi*(n/N))); + window[n] = 0.5 * (1 - cos (2 * pi * (n / N))); } } //======================================================================= -void OnsetDetectionFunction :: calclulateHammingWindow() +void OnsetDetectionFunction::calclulateHammingWindow() { double N; // variable to store framesize minus 1 double n_val; // double version of index 'n' @@ -642,13 +694,13 @@ // Hamming window calculation for (int n = 0;n < frameSize;n++) { - window[n] = 0.54 - (0.46*cos(2*pi*(n_val/N))); + window[n] = 0.54 - (0.46 * cos (2 * pi * (n_val/N))); n_val = n_val+1; } } //======================================================================= -void OnsetDetectionFunction :: calculateBlackmanWindow() +void OnsetDetectionFunction::calculateBlackmanWindow() { double N; // variable to store framesize minus 1 double n_val; // double version of index 'n' @@ -665,7 +717,7 @@ } //======================================================================= -void OnsetDetectionFunction :: calculateTukeyWindow() +void OnsetDetectionFunction::calculateTukeyWindow() { double N; // variable to store framesize minus 1 double n_val; // double version of index 'n' @@ -700,7 +752,7 @@ } //======================================================================= -void OnsetDetectionFunction :: calculateRectangularWindow() +void OnsetDetectionFunction::calculateRectangularWindow() { // Rectangular window calculation for (int n = 0;n < frameSize;n++) @@ -709,39 +761,24 @@ } } - - //////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Other Handy Methods ////////////////////////////////////////// //======================================================================= -double OnsetDetectionFunction :: princarg(double phaseVal) +double OnsetDetectionFunction::princarg(double phaseVal) { // if phase value is less than or equal to -pi then add 2*pi while (phaseVal <= (-pi)) { - phaseVal = phaseVal + (2*pi); + phaseVal = phaseVal + (2 * pi); } // if phase value is larger than pi, then subtract 2*pi while (phaseVal > pi) { - phaseVal = phaseVal - (2*pi); + phaseVal = phaseVal - (2 * pi); } return phaseVal; } - - - - - - - - - - - - -
--- a/src/OnsetDetectionFunction.h Sun Jan 10 11:36:52 2016 +0000 +++ b/src/OnsetDetectionFunction.h Sat Jun 18 10:50:06 2016 +0100 @@ -22,7 +22,14 @@ #ifndef __ONSETDETECTIONFUNCTION_H #define __ONSETDETECTIONFUNCTION_H +#ifdef USE_FFTW #include "fftw3.h" +#endif + +#ifdef USE_KISS_FFT +#include "kiss_fft.h" +#endif + #include <vector> //======================================================================= @@ -63,7 +70,7 @@ * @param hopSize_ the hop size in audio samples * @param frameSize_ the frame size in audio samples */ - OnsetDetectionFunction(int hopSize_,int frameSize_); + OnsetDetectionFunction (int hopSize_, int frameSize_); /** Constructor @@ -72,7 +79,7 @@ * @param onsetDetectionFunctionType_ the type of onset detection function to use - (see OnsetDetectionFunctionType) * @param windowType the type of window to use (see WindowType) */ - OnsetDetectionFunction(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType_); + OnsetDetectionFunction (int hopSize_, int frameSize_, int onsetDetectionFunctionType_, int windowType_); /** Destructor */ ~OnsetDetectionFunction(); @@ -82,7 +89,7 @@ * @param hopSize_ the hop size in audio samples * @param frameSize_ the frame size in audio samples */ - void initialise(int hopSize_,int frameSize_); + void initialise (int hopSize_, int frameSize_); /** Initialisation Function * @param hopSize_ the hop size in audio samples @@ -90,18 +97,18 @@ * @param onsetDetectionFunctionType_ the type of onset detection function to use - (see OnsetDetectionFunctionType) * @param windowType the type of window to use (see WindowType) */ - void initialise(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType_); + void initialise (int hopSize_, int frameSize_, int onsetDetectionFunctionType_, int windowType_); /** Process input frame and calculate detection function sample * @param buffer a pointer to an array containing the audio samples to be processed * @returns the onset detection function sample */ - double calculateOnsetDetectionFunctionSample(double *buffer); + double calculateOnsetDetectionFunctionSample (double* buffer); /** Set the detection function type * @param onsetDetectionFunctionType_ the type of onset detection function to use - (see OnsetDetectionFunctionType) */ - void setOnsetDetectionFunctionType(int onsetDetectionFunctionType_); + void setOnsetDetectionFunctionType (int onsetDetectionFunctionType_); private: @@ -162,6 +169,8 @@ */ double princarg(double phaseVal); + void initialiseFFT(); + void freeFFT(); double pi; /**< pi, the constant */ @@ -169,11 +178,22 @@ int hopSize; /**< audio hopsize */ int onsetDetectionFunctionType; /**< type of detection function */ int windowType; /**< type of window used in calculations */ + + //======================================================================= +#ifdef USE_FFTW + fftw_plan p; /**< fftw plan */ + fftw_complex* complexIn; /**< to hold complex fft values for input */ + fftw_complex* complexOut; /**< to hold complex fft values for output */ +#endif + +#ifdef USE_KISS_FFT + kiss_fft_cfg cfg; /**< Kiss FFT configuration */ + kiss_fft_cpx* fftIn; /**< FFT input samples, in complex form */ + kiss_fft_cpx* fftOut; /**< FFT output samples, in complex form */ + std::vector<std::vector<double> > complexOut; +#endif - fftw_plan p; /**< fftw plan */ - fftw_complex *complexIn; /**< to hold complex fft values for input */ - fftw_complex *complexOut; /**< to hold complex fft values for output */ - + //======================================================================= bool initialised; /**< flag indicating whether buffers and FFT plans are initialised */ std::vector<double> frame; /**< audio frame */
--- a/unit-tests/BTrack Tests.xcodeproj/project.pbxproj Sun Jan 10 11:36:52 2016 +0000 +++ b/unit-tests/BTrack Tests.xcodeproj/project.pbxproj Sat Jun 18 10:50:06 2016 +0100 @@ -12,6 +12,7 @@ E38214F2188E7AED00DDD7C8 /* BTrack_Tests.1 in CopyFiles */ = {isa = PBXBuildFile; fileRef = E38214F1188E7AED00DDD7C8 /* BTrack_Tests.1 */; }; E3A45DB9188E7BCD00B48CE4 /* BTrack.cpp in Sources */ = {isa = PBXBuildFile; fileRef = E3A45DB5188E7BCD00B48CE4 /* BTrack.cpp */; }; E3A45DBA188E7BCD00B48CE4 /* OnsetDetectionFunction.cpp in Sources */ = {isa = PBXBuildFile; fileRef = E3A45DB7188E7BCD00B48CE4 /* OnsetDetectionFunction.cpp */; }; + E3CDB1F71CE3EABC00EE78E5 /* kiss_fft.c in Sources */ = {isa = PBXBuildFile; fileRef = E3CDB1F31CE3EABC00EE78E5 /* kiss_fft.c */; }; /* End PBXBuildFile section */ /* Begin PBXCopyFilesBuildPhase section */ @@ -36,6 +37,11 @@ E3A45DB6188E7BCD00B48CE4 /* BTrack.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = BTrack.h; sourceTree = "<group>"; }; E3A45DB7188E7BCD00B48CE4 /* OnsetDetectionFunction.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = OnsetDetectionFunction.cpp; sourceTree = "<group>"; }; E3A45DB8188E7BCD00B48CE4 /* OnsetDetectionFunction.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = OnsetDetectionFunction.h; sourceTree = "<group>"; }; + E3A5E1D91C63CE83007A17B0 /* CircularBuffer.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = CircularBuffer.h; sourceTree = "<group>"; }; + E3CDB1F11CE3EABC00EE78E5 /* _kiss_fft_guts.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = _kiss_fft_guts.h; sourceTree = "<group>"; }; + E3CDB1F31CE3EABC00EE78E5 /* kiss_fft.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = kiss_fft.c; sourceTree = "<group>"; }; + E3CDB1F41CE3EABC00EE78E5 /* kiss_fft.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = kiss_fft.h; sourceTree = "<group>"; }; + E3CDB1F51CE3EABC00EE78E5 /* kissfft.hh */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = kissfft.hh; sourceTree = "<group>"; }; /* End PBXFileReference section */ /* Begin PBXFrameworksBuildPhase section */ @@ -78,6 +84,7 @@ isa = PBXGroup; children = ( E38214EF188E7AED00DDD7C8 /* main.cpp */, + E3CDB1EF1CE3EABC00EE78E5 /* libs */, E31C500218913007006530ED /* tests */, E3A45DB4188E7BCD00B48CE4 /* src */, E38214F1188E7AED00DDD7C8 /* BTrack_Tests.1 */, @@ -92,11 +99,32 @@ E3A45DB6188E7BCD00B48CE4 /* BTrack.h */, E3A45DB7188E7BCD00B48CE4 /* OnsetDetectionFunction.cpp */, E3A45DB8188E7BCD00B48CE4 /* OnsetDetectionFunction.h */, + E3A5E1D91C63CE83007A17B0 /* CircularBuffer.h */, ); name = src; path = ../../src; sourceTree = "<group>"; }; + E3CDB1EF1CE3EABC00EE78E5 /* libs */ = { + isa = PBXGroup; + children = ( + E3CDB1F01CE3EABC00EE78E5 /* kiss_fft130 */, + ); + name = libs; + path = ../../libs; + sourceTree = "<group>"; + }; + E3CDB1F01CE3EABC00EE78E5 /* kiss_fft130 */ = { + isa = PBXGroup; + children = ( + E3CDB1F11CE3EABC00EE78E5 /* _kiss_fft_guts.h */, + E3CDB1F31CE3EABC00EE78E5 /* kiss_fft.c */, + E3CDB1F41CE3EABC00EE78E5 /* kiss_fft.h */, + E3CDB1F51CE3EABC00EE78E5 /* kissfft.hh */, + ); + path = kiss_fft130; + sourceTree = "<group>"; + }; /* End PBXGroup section */ /* Begin PBXNativeTarget section */ @@ -149,6 +177,7 @@ buildActionMask = 2147483647; files = ( E31C50041891302D006530ED /* Test_BTrack.cpp in Sources */, + E3CDB1F71CE3EABC00EE78E5 /* kiss_fft.c in Sources */, E3A45DBA188E7BCD00B48CE4 /* OnsetDetectionFunction.cpp in Sources */, E3A45DB9188E7BCD00B48CE4 /* BTrack.cpp in Sources */, E38214F0188E7AED00DDD7C8 /* main.cpp in Sources */, @@ -251,6 +280,10 @@ E38214F6188E7AED00DDD7C8 /* Debug */ = { isa = XCBuildConfiguration; buildSettings = { + OTHER_CPLUSPLUSFLAGS = ( + "$(OTHER_CFLAGS)", + "-DUSE_FFTW", + ); OTHER_LDFLAGS = ( "-lboost_unit_test_framework", "-lsamplerate", @@ -263,6 +296,10 @@ E38214F7188E7AED00DDD7C8 /* Release */ = { isa = XCBuildConfiguration; buildSettings = { + OTHER_CPLUSPLUSFLAGS = ( + "$(OTHER_CFLAGS)", + "-DUSE_FFTW", + ); OTHER_LDFLAGS = ( "-lboost_unit_test_framework", "-lsamplerate",
--- a/unit-tests/BTrack Tests/main.cpp Sun Jan 10 11:36:52 2016 +0000 +++ b/unit-tests/BTrack Tests/main.cpp Sat Jun 18 10:50:06 2016 +0100 @@ -1,3 +1,23 @@ #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MODULE BTrackTests -#include <boost/test/unit_test.hpp> \ No newline at end of file +#include <boost/test/unit_test.hpp> + +//#include "CircularBuffer.h" +//#include <iostream> +// +//int main() +//{ +// CircularBuffer buffer; +// +// buffer.resize(10); +// +// buffer.addSampleToEnd(10); +// buffer.addSampleToEnd(8); +// +// for (int i = 0;i < 10;i++) +// { +// std::cout << buffer[i] << std::endl; +// } +// +// return 0; +//} \ No newline at end of file