Mercurial > hg > btrack
diff src/BTrack.cpp @ 96:c58f01834337
Merge branch 'release/1.0.4'
author | Adam Stark <adamstark.uk@gmail.com> |
---|---|
date | Sat, 18 Jun 2016 10:50:06 +0100 |
parents | 4aa362058011 |
children | 6a4dd7478954 |
line wrap: on
line diff
--- a/src/BTrack.cpp Sun Jan 10 11:36:52 2016 +0000 +++ b/src/BTrack.cpp Sat Jun 18 10:50:06 2016 +0100 @@ -23,27 +23,50 @@ #include <algorithm> #include "BTrack.h" #include "samplerate.h" +#include <iostream> //======================================================================= -BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow) +BTrack::BTrack() + : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow) { - initialise(512, 1024); + initialise (512, 1024); } //======================================================================= -BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow) +BTrack::BTrack (int hopSize_) + : odf(hopSize_, 2*hopSize_, ComplexSpectralDifferenceHWR, HanningWindow) { - initialise(hopSize_, 2*hopSize_); + initialise (hopSize_, 2*hopSize_); } //======================================================================= -BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow) +BTrack::BTrack (int hopSize_, int frameSize_) + : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow) { - initialise(hopSize_, frameSize_); + initialise (hopSize_, frameSize_); } //======================================================================= -double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs) +BTrack::~BTrack() +{ +#ifdef USE_FFTW + // destroy fft plan + fftw_destroy_plan (acfForwardFFT); + fftw_destroy_plan (acfBackwardFFT); + fftw_free (complexIn); + fftw_free (complexOut); +#endif + +#ifdef USE_KISS_FFT + free (cfgForwards); + free (cfgBackwards); + delete [] fftIn; + delete [] fftOut; +#endif +} + +//======================================================================= +double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs) { double hop = (double) hopSize; double samplingFrequency = (double) fs; @@ -53,17 +76,17 @@ } //======================================================================= -double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs) +double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs) { long frameNum = (long) frameNumber; - return getBeatTimeInSeconds(frameNum, hopSize, fs); + return getBeatTimeInSeconds (frameNum, hopSize, fs); } //======================================================================= -void BTrack::initialise(int hopSize_, int frameSize_) +void BTrack::initialise (int hopSize_, int frameSize_) { double rayparam = 43; double pi = 3.14159265; @@ -83,13 +106,13 @@ // create rayleigh weighting vector - for (int n = 0;n < 128;n++) + for (int n = 0; n < 128; n++) { weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); } // initialise prev_delta - for (int i = 0;i < 41;i++) + for (int i = 0; i < 41; i++) { prevDelta[i] = 1; } @@ -118,10 +141,29 @@ // initialise algorithm given the hopsize setHopSize(hopSize_); + + + // Set up FFT for calculating the auto-correlation function + FFTLengthForACFCalculation = 1024; + +#ifdef USE_FFTW + complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data + complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data + + acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation + acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation +#endif + +#ifdef USE_KISS_FFT + fftIn = new kiss_fft_cpx[FFTLengthForACFCalculation]; + fftOut = new kiss_fft_cpx[FFTLengthForACFCalculation]; + cfgForwards = kiss_fft_alloc (FFTLengthForACFCalculation, 0, 0, 0); + cfgBackwards = kiss_fft_alloc (FFTLengthForACFCalculation, 1, 0, 0); +#endif } //======================================================================= -void BTrack::setHopSize(int hopSize_) +void BTrack::setHopSize (int hopSize_) { hopSize = hopSize_; onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size @@ -129,18 +171,17 @@ beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); // set size of onset detection function buffer - onsetDF.resize(onsetDFBufferSize); + onsetDF.resize (onsetDFBufferSize); // set size of cumulative score buffer - cumulativeScore.resize(onsetDFBufferSize); + cumulativeScore.resize (onsetDFBufferSize); // initialise df_buffer to zeros - for (int i = 0;i < onsetDFBufferSize;i++) + for (int i = 0; i < onsetDFBufferSize; i++) { onsetDF[i] = 0; cumulativeScore[i] = 0; - if ((i % ((int) round(beatPeriod))) == 0) { onsetDF[i] = 1; @@ -149,13 +190,13 @@ } //======================================================================= -void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_) +void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_) { // update the onset detection function object - odf.initialise(hopSize_, frameSize_); + odf.initialise (hopSize_, frameSize_); // update the hop size being used by the beat tracker - setHopSize(hopSize_); + setHopSize (hopSize_); } //======================================================================= @@ -183,23 +224,21 @@ } //======================================================================= -void BTrack::processAudioFrame(double *frame) +void BTrack::processAudioFrame (double* frame) { // calculate the onset detection function sample for the frame - double sample = odf.calculateOnsetDetectionFunctionSample(frame); - - + double sample = odf.calculateOnsetDetectionFunctionSample (frame); // process the new onset detection function sample in the beat tracking algorithm - processOnsetDetectionFunctionSample(sample); + processOnsetDetectionFunctionSample (sample); } //======================================================================= -void BTrack::processOnsetDetectionFunctionSample(double newSample) +void BTrack::processOnsetDetectionFunctionSample (double newSample) { // we need to ensure that the onset // detection function sample is positive - newSample = fabs(newSample); + newSample = fabs (newSample); // add a tiny constant to the sample to stop it from ever going // to zero. this is to avoid problems further down the line @@ -208,18 +247,12 @@ m0--; beatCounter--; beatDueInFrame = false; - - // move all samples back one step - for (int i=0;i < (onsetDFBufferSize-1);i++) - { - onsetDF[i] = onsetDF[i+1]; - } - + // add new sample at the end - onsetDF[onsetDFBufferSize-1] = newSample; + onsetDF.addSampleToEnd (newSample); // update cumulative score - updateCumulativeScore(newSample); + updateCumulativeScore (newSample); // if we are halfway between beats if (m0 == 0) @@ -239,7 +272,7 @@ } //======================================================================= -void BTrack::setTempo(double tempo) +void BTrack::setTempo (double tempo) { /////////// TEMPO INDICATION RESET ////////////////// @@ -306,7 +339,7 @@ } //======================================================================= -void BTrack::fixTempo(double tempo) +void BTrack::fixTempo (double tempo) { // firstly make sure tempo is between 80 and 160 bpm.. while (tempo > 160) @@ -346,52 +379,52 @@ void BTrack::resampleOnsetDetectionFunction() { float output[512]; + float input[onsetDFBufferSize]; for (int i = 0;i < onsetDFBufferSize;i++) { input[i] = (float) onsetDF[i]; } - - double src_ratio = 512.0/((double) onsetDFBufferSize); - int BUFFER_LEN = onsetDFBufferSize; - int output_len; - SRC_DATA src_data ; - - //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; - output_len = 512; - - src_data.data_in = input; - src_data.input_frames = BUFFER_LEN; - - src_data.src_ratio = src_ratio; - - src_data.data_out = output; - src_data.output_frames = output_len; - - src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); - - for (int i = 0;i < output_len;i++) - { - resampledOnsetDF[i] = (double) src_data.data_out[i]; - } + + double src_ratio = 512.0/((double) onsetDFBufferSize); + int BUFFER_LEN = onsetDFBufferSize; + int output_len; + SRC_DATA src_data ; + + //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; + output_len = 512; + + src_data.data_in = input; + src_data.input_frames = BUFFER_LEN; + + src_data.src_ratio = src_ratio; + + src_data.data_out = output; + src_data.output_frames = output_len; + + src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); + + for (int i = 0;i < output_len;i++) + { + resampledOnsetDF[i] = (double) src_data.data_out[i]; + } } //======================================================================= void BTrack::calculateTempo() { // adaptive threshold on input - adaptiveThreshold(resampledOnsetDF,512); + adaptiveThreshold (resampledOnsetDF,512); // calculate auto-correlation function of detection function - calculateBalancedACF(resampledOnsetDF); + calculateBalancedACF (resampledOnsetDF); // calculate output of comb filterbank calculateOutputOfCombFilterBank(); - // adaptive threshold on rcf - adaptiveThreshold(combFilterBankOutput,128); + adaptiveThreshold (combFilterBankOutput,128); int t_index; @@ -399,8 +432,8 @@ // calculate tempo observation vector from beat period observation vector for (int i = 0;i < 41;i++) { - t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80))); - t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160))); + t_index = (int) round (tempoToLagFactor / ((double) ((2*i)+80))); + t_index2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160))); tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1]; @@ -425,7 +458,7 @@ maxval = -1; for (int i = 0;i < 41;i++) { - curval = prevDelta[i]*tempoTransitionMatrix[i][j]; + curval = prevDelta[i] * tempoTransitionMatrix[i][j]; if (curval > maxval) { @@ -433,7 +466,7 @@ } } - delta[j] = maxval*tempoObservationVector[j]; + delta[j] = maxval * tempoObservationVector[j]; } @@ -453,16 +486,16 @@ prevDelta[j] = delta[j]; } - beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); + beatPeriod = round ((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); if (beatPeriod > 0) { - estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod); + estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod); } } //======================================================================= -void BTrack::adaptiveThreshold(double *x,int N) +void BTrack::adaptiveThreshold (double* x, int N) { int i = 0; int k,t = 0; @@ -476,23 +509,23 @@ // find threshold for first 't' samples, where a full average cannot be computed yet for (i = 0;i <= t;i++) { - k = std::min((i+p_pre),N); - x_thresh[i] = calculateMeanOfArray(x,1,k); + k = std::min ((i+p_pre),N); + x_thresh[i] = calculateMeanOfArray (x,1,k); } // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] for (i = t+1;i < N-p_post;i++) { - x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post); + x_thresh[i] = calculateMeanOfArray (x,i-p_pre,i+p_post); } // for last few samples calculate threshold, again, not enough samples to do as above for (i = N-p_post;i < N;i++) { - k = std::max((i-p_post),1); - x_thresh[i] = calculateMeanOfArray(x,k,N); + k = std::max ((i-p_post),1); + x_thresh[i] = calculateMeanOfArray (x,k,N); } // subtract the threshold from the detection function and check that it is not less than 0 - for (i = 0;i < N;i++) + for (i = 0; i < N; i++) { x[i] = x[i] - x_thresh[i]; if (x[i] < 0) @@ -514,11 +547,11 @@ numelem = 4; - for (int i = 2;i <= 127;i++) // max beat period + for (int i = 2; i <= 127; i++) // max beat period { - for (int a = 1;a <= numelem;a++) // number of comb elements + for (int a = 1; a <= numelem; a++) // number of comb elements { - for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements + for (int b = 1-a; b <= a-1; b++) // general state using normalisation of comb elements { combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row } @@ -527,29 +560,99 @@ } //======================================================================= -void BTrack::calculateBalancedACF(double *onsetDetectionFunction) +void BTrack::calculateBalancedACF (double* onsetDetectionFunction) { - int l, n = 0; - double sum, tmp; - - // for l lags from 0-511 - for (l = 0;l < 512;l++) - { - sum = 0; - - // for n samples from 0 - (512-lag) - for (n = 0;n < (512-l);n++) - { - tmp = onsetDetectionFunction[n] * onsetDetectionFunction[n+l]; // multiply current sample n by sample (n+l) - sum = sum + tmp; // add to sum - } - - acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer - } + int onsetDetectionFunctionLength = 512; + +#ifdef USE_FFTW + // copy into complex array and zero pad + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + if (i < onsetDetectionFunctionLength) + { + complexIn[i][0] = onsetDetectionFunction[i]; + complexIn[i][1] = 0.0; + } + else + { + complexIn[i][0] = 0.0; + complexIn[i][1] = 0.0; + } + } + + // perform the fft + fftw_execute (acfForwardFFT); + + // multiply by complex conjugate + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1]; + complexOut[i][1] = 0.0; + } + + // perform the ifft + fftw_execute (acfBackwardFFT); + +#endif + +#ifdef USE_KISS_FFT + // copy into complex array and zero pad + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + if (i < onsetDetectionFunctionLength) + { + fftIn[i].r = onsetDetectionFunction[i]; + fftIn[i].i = 0.0; + } + else + { + fftIn[i].r = 0.0; + fftIn[i].i = 0.0; + } + } + + // execute kiss fft + kiss_fft (cfgForwards, fftIn, fftOut); + + // multiply by complex conjugate + for (int i = 0;i < FFTLengthForACFCalculation;i++) + { + fftOut[i].r = fftOut[i].r * fftOut[i].r + fftOut[i].i * fftOut[i].i; + fftOut[i].i = 0.0; + } + + // perform the ifft + kiss_fft (cfgBackwards, fftOut, fftIn); + +#endif + + double lag = 512; + + for (int i = 0; i < 512; i++) + { +#ifdef USE_FFTW + // calculate absolute value of result + double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]); +#endif + +#ifdef USE_KISS_FFT + // calculate absolute value of result + double absValue = sqrt (fftIn[i].r * fftIn[i].r + fftIn[i].i * fftIn[i].i); +#endif + // divide by inverse lad to deal with scale bias towards small lags + acf[i] = absValue / lag; + + // this division by 1024 is technically unnecessary but it ensures the algorithm produces + // exactly the same ACF output as the old time domain implementation. The time difference is + // minimal so I decided to keep it + acf[i] = acf[i] / 1024.; + + lag = lag - 1.; + } } //======================================================================= -double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex) +double BTrack::calculateMeanOfArray (double* array, int startIndex, int endIndex) { int i; double sum = 0; @@ -557,7 +660,7 @@ int length = endIndex - startIndex; // find sum - for (i = startIndex;i < endIndex;i++) + for (i = startIndex; i < endIndex; i++) { sum = sum + array[i]; } @@ -573,11 +676,11 @@ } //======================================================================= -void BTrack::normaliseArray(double *array,int N) +void BTrack::normaliseArray (double* array, int N) { double sum = 0; - for (int i = 0;i < N;i++) + for (int i = 0; i < N; i++) { if (array[i] > 0) { @@ -587,7 +690,7 @@ if (sum > 0) { - for (int i = 0;i < N;i++) + for (int i = 0; i < N; i++) { array[i] = array[i] / sum; } @@ -595,31 +698,30 @@ } //======================================================================= -void BTrack::updateCumulativeScore(double odfSample) +void BTrack::updateCumulativeScore (double odfSample) { int start, end, winsize; double max; - start = onsetDFBufferSize - round(2*beatPeriod); - end = onsetDFBufferSize - round(beatPeriod/2); + start = onsetDFBufferSize - round (2 * beatPeriod); + end = onsetDFBufferSize - round (beatPeriod / 2); winsize = end-start+1; double w1[winsize]; double v = -2*beatPeriod; double wcumscore; - // create window - for (int i = 0;i < winsize;i++) + for (int i = 0; i < winsize; i++) { - w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); + w1[i] = exp((-1 * pow (tightness * log (-v / beatPeriod), 2)) / 2); v = v+1; } // calculate new cumulative score value max = 0; int n = 0; - for (int i=start;i <= end;i++) + for (int i=start; i <= end; i++) { wcumscore = cumulativeScore[i]*w1[n]; @@ -630,18 +732,9 @@ n++; } - - // shift cumulative score back one - for (int i = 0;i < (onsetDFBufferSize-1);i++) - { - cumulativeScore[i] = cumulativeScore[i+1]; - } - - // add new value to cumulative score - cumulativeScore[onsetDFBufferSize-1] = ((1-alpha)*odfSample) + (alpha*max); - - latestCumulativeScoreValue = cumulativeScore[onsetDFBufferSize-1]; - + latestCumulativeScoreValue = ((1 - alpha) * odfSample) + (alpha * max); + + cumulativeScore.addSampleToEnd (latestCumulativeScoreValue); } //======================================================================= @@ -650,6 +743,7 @@ int windowSize = (int) beatPeriod; double futureCumulativeScore[onsetDFBufferSize + windowSize]; double w2[windowSize]; + // copy cumscore to first part of fcumscore for (int i = 0;i < onsetDFBufferSize;i++) { @@ -658,7 +752,7 @@ // create future window double v = 1; - for (int i = 0;i < windowSize;i++) + for (int i = 0; i < windowSize; i++) { w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); v++; @@ -677,16 +771,14 @@ v = v+1; } - - // calculate future cumulative score double max; int n; double wcumscore; - for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) + for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) { - start = i - round(2*beatPeriod); - end = i - round(beatPeriod/2); + start = i - round (2*beatPeriod); + end = i - round (beatPeriod/2); max = 0; n = 0; @@ -704,12 +796,11 @@ futureCumulativeScore[i] = max; } - // predict beat max = 0; n = 0; - for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) + for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) { wcumscore = futureCumulativeScore[i]*w2[n]; @@ -723,7 +814,5 @@ } // set next prediction time - m0 = beatCounter+round(beatPeriod/2); - - + m0 = beatCounter + round (beatPeriod / 2); } \ No newline at end of file