annotate src/BTrack.cpp @ 38:b7e3ed593fb0

flow: Created branch 'release/v0.9.0'.
author Adam Stark <adamstark@users.noreply.github.com>
date Tue, 21 Jan 2014 01:44:55 +0000
parents
children bb3803edaa17
rev   line source
adamstark@38 1 //=======================================================================
adamstark@38 2 /** @file BTrack.cpp
adamstark@38 3 * @brief BTrack - a real-time beat tracker
adamstark@38 4 * @author Adam Stark
adamstark@38 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@38 6 *
adamstark@38 7 * This program is free software: you can redistribute it and/or modify
adamstark@38 8 * it under the terms of the GNU General Public License as published by
adamstark@38 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@38 10 * (at your option) any later version.
adamstark@38 11 *
adamstark@38 12 * This program is distributed in the hope that it will be useful,
adamstark@38 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@38 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@38 15 * GNU General Public License for more details.
adamstark@38 16 *
adamstark@38 17 * You should have received a copy of the GNU General Public License
adamstark@38 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@38 19 */
adamstark@38 20 //=======================================================================
adamstark@38 21
adamstark@38 22 #include <iostream>
adamstark@38 23 #include <cmath>
adamstark@38 24 #include "BTrack.h"
adamstark@38 25 #include "samplerate.h"
adamstark@38 26 using namespace std;
adamstark@38 27
adamstark@38 28
adamstark@38 29
adamstark@38 30
adamstark@38 31 //-------------------------------------------------------------------------------
adamstark@38 32 // Constructor
adamstark@38 33 BTrack :: BTrack()
adamstark@38 34 {
adamstark@38 35 float rayparam = 43;
adamstark@38 36 float pi = 3.14159265;
adamstark@38 37
adamstark@38 38
adamstark@38 39 // initialise parameters
adamstark@38 40 tightness = 5;
adamstark@38 41 alpha = 0.9;
adamstark@38 42 tempo = 120;
adamstark@38 43 est_tempo = 120;
adamstark@38 44 p_fact = 60.*44100./512.;
adamstark@38 45
adamstark@38 46 m0 = 10;
adamstark@38 47 beat = -1;
adamstark@38 48
adamstark@38 49 playbeat = 0;
adamstark@38 50
adamstark@38 51
adamstark@38 52
adamstark@38 53
adamstark@38 54 // create rayleigh weighting vector
adamstark@38 55 for (int n = 0;n < 128;n++)
adamstark@38 56 {
adamstark@38 57 wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@38 58 }
adamstark@38 59
adamstark@38 60 // initialise prev_delta
adamstark@38 61 for (int i = 0;i < 41;i++)
adamstark@38 62 {
adamstark@38 63 prev_delta[i] = 1;
adamstark@38 64 }
adamstark@38 65
adamstark@38 66 float t_mu = 41/2;
adamstark@38 67 float m_sig;
adamstark@38 68 float x;
adamstark@38 69 // create tempo transition matrix
adamstark@38 70 m_sig = 41/8;
adamstark@38 71 for (int i = 0;i < 41;i++)
adamstark@38 72 {
adamstark@38 73 for (int j = 0;j < 41;j++)
adamstark@38 74 {
adamstark@38 75 x = j+1;
adamstark@38 76 t_mu = i+1;
adamstark@38 77 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@38 78 }
adamstark@38 79 }
adamstark@38 80
adamstark@38 81 // tempo is not fixed
adamstark@38 82 tempofix = 0;
adamstark@38 83 }
adamstark@38 84
adamstark@38 85 //-------------------------------------------------------------------------------
adamstark@38 86 // Destructor
adamstark@38 87 BTrack :: ~BTrack()
adamstark@38 88 {
adamstark@38 89
adamstark@38 90 }
adamstark@38 91
adamstark@38 92 //-------------------------------------------------------------------------------
adamstark@38 93 // Initialise with frame size and set all frame sizes accordingly
adamstark@38 94 void BTrack :: initialise(int fsize)
adamstark@38 95 {
adamstark@38 96 framesize = fsize;
adamstark@38 97 dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@38 98
adamstark@38 99 bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@38 100
adamstark@38 101 dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@38 102 cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@38 103
adamstark@38 104
adamstark@38 105 // initialise df_buffer to zeros
adamstark@38 106 for (int i = 0;i < dfbuffer_size;i++)
adamstark@38 107 {
adamstark@38 108 dfbuffer[i] = 0;
adamstark@38 109 cumscore[i] = 0;
adamstark@38 110
adamstark@38 111
adamstark@38 112 if ((i % ((int) round(bperiod))) == 0)
adamstark@38 113 {
adamstark@38 114 dfbuffer[i] = 1;
adamstark@38 115 }
adamstark@38 116 }
adamstark@38 117 }
adamstark@38 118
adamstark@38 119 //-------------------------------------------------------------------------------
adamstark@38 120 // Add new sample to buffer and apply beat tracking
adamstark@38 121 void BTrack :: process(float df_sample)
adamstark@38 122 {
adamstark@38 123 m0--;
adamstark@38 124 beat--;
adamstark@38 125 playbeat = 0;
adamstark@38 126
adamstark@38 127 // move all samples back one step
adamstark@38 128 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@38 129 {
adamstark@38 130 dfbuffer[i] = dfbuffer[i+1];
adamstark@38 131 }
adamstark@38 132
adamstark@38 133 // add new sample at the end
adamstark@38 134 dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@38 135
adamstark@38 136 // update cumulative score
adamstark@38 137 updatecumscore(df_sample);
adamstark@38 138
adamstark@38 139 // if we are halfway between beats
adamstark@38 140 if (m0 == 0)
adamstark@38 141 {
adamstark@38 142 predictbeat();
adamstark@38 143 }
adamstark@38 144
adamstark@38 145 // if we are at a beat
adamstark@38 146 if (beat == 0)
adamstark@38 147 {
adamstark@38 148 playbeat = 1; // indicate a beat should be output
adamstark@38 149
adamstark@38 150 // recalculate the tempo
adamstark@38 151 dfconvert();
adamstark@38 152 calcTempo();
adamstark@38 153 }
adamstark@38 154 }
adamstark@38 155
adamstark@38 156 //-------------------------------------------------------------------------------
adamstark@38 157 // Set the tempo of the beat tracker
adamstark@38 158 void BTrack :: settempo(float tempo)
adamstark@38 159 {
adamstark@38 160
adamstark@38 161 /////////// TEMPO INDICATION RESET //////////////////
adamstark@38 162
adamstark@38 163 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@38 164 while (tempo > 160)
adamstark@38 165 {
adamstark@38 166 tempo = tempo/2;
adamstark@38 167 }
adamstark@38 168
adamstark@38 169 while (tempo < 80)
adamstark@38 170 {
adamstark@38 171 tempo = tempo * 2;
adamstark@38 172 }
adamstark@38 173
adamstark@38 174 // convert tempo from bpm value to integer index of tempo probability
adamstark@38 175 int tempo_index = (int) round((tempo - 80)/2);
adamstark@38 176
adamstark@38 177 // now set previous tempo observations to zero
adamstark@38 178 for (int i=0;i < 41;i++)
adamstark@38 179 {
adamstark@38 180 prev_delta[i] = 0;
adamstark@38 181 }
adamstark@38 182
adamstark@38 183 // set desired tempo index to 1
adamstark@38 184 prev_delta[tempo_index] = 1;
adamstark@38 185
adamstark@38 186
adamstark@38 187 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@38 188
adamstark@38 189 // calculate new beat period
adamstark@38 190 int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@38 191
adamstark@38 192 int bcounter = 1;
adamstark@38 193 // initialise df_buffer to zeros
adamstark@38 194 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@38 195 {
adamstark@38 196 if (bcounter == 1)
adamstark@38 197 {
adamstark@38 198 cumscore[i] = 150;
adamstark@38 199 dfbuffer[i] = 150;
adamstark@38 200 }
adamstark@38 201 else
adamstark@38 202 {
adamstark@38 203 cumscore[i] = 10;
adamstark@38 204 dfbuffer[i] = 10;
adamstark@38 205 }
adamstark@38 206
adamstark@38 207 bcounter++;
adamstark@38 208
adamstark@38 209 if (bcounter > new_bperiod)
adamstark@38 210 {
adamstark@38 211 bcounter = 1;
adamstark@38 212 }
adamstark@38 213 }
adamstark@38 214
adamstark@38 215 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@38 216
adamstark@38 217 // beat is now
adamstark@38 218 beat = 0;
adamstark@38 219
adamstark@38 220 // offbeat is half of new beat period away
adamstark@38 221 m0 = (int) round(((float) new_bperiod)/2);
adamstark@38 222 }
adamstark@38 223
adamstark@38 224
adamstark@38 225 //-------------------------------------------------------------------------------
adamstark@38 226 // fix tempo to roughly around some value
adamstark@38 227 void BTrack :: fixtempo(float tempo)
adamstark@38 228 {
adamstark@38 229 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@38 230 while (tempo > 160)
adamstark@38 231 {
adamstark@38 232 tempo = tempo/2;
adamstark@38 233 }
adamstark@38 234
adamstark@38 235 while (tempo < 80)
adamstark@38 236 {
adamstark@38 237 tempo = tempo * 2;
adamstark@38 238 }
adamstark@38 239
adamstark@38 240 // convert tempo from bpm value to integer index of tempo probability
adamstark@38 241 int tempo_index = (int) round((tempo - 80)/2);
adamstark@38 242
adamstark@38 243 // now set previous fixed previous tempo observation values to zero
adamstark@38 244 for (int i=0;i < 41;i++)
adamstark@38 245 {
adamstark@38 246 prev_delta_fix[i] = 0;
adamstark@38 247 }
adamstark@38 248
adamstark@38 249 // set desired tempo index to 1
adamstark@38 250 prev_delta_fix[tempo_index] = 1;
adamstark@38 251
adamstark@38 252 // set the tempo fix flag
adamstark@38 253 tempofix = 1;
adamstark@38 254 }
adamstark@38 255
adamstark@38 256 //-------------------------------------------------------------------------------
adamstark@38 257 // do not fix the tempo anymore
adamstark@38 258 void BTrack :: unfixtempo()
adamstark@38 259 {
adamstark@38 260 // set the tempo fix flag
adamstark@38 261 tempofix = 0;
adamstark@38 262 }
adamstark@38 263
adamstark@38 264 //-------------------------------------------------------------------------------
adamstark@38 265 // Convert detection function from N samples to 512
adamstark@38 266 void BTrack :: dfconvert()
adamstark@38 267 {
adamstark@38 268 float output[512];
adamstark@38 269
adamstark@38 270 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@38 271 int BUFFER_LEN = dfbuffer_size;
adamstark@38 272 int output_len;
adamstark@38 273 SRC_DATA src_data ;
adamstark@38 274
adamstark@38 275 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@38 276 output_len = 512;
adamstark@38 277
adamstark@38 278 src_data.data_in = dfbuffer;
adamstark@38 279 src_data.input_frames = BUFFER_LEN;
adamstark@38 280
adamstark@38 281 src_data.src_ratio = src_ratio;
adamstark@38 282
adamstark@38 283 src_data.data_out = output;
adamstark@38 284 src_data.output_frames = output_len;
adamstark@38 285
adamstark@38 286 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@38 287
adamstark@38 288 for (int i = 0;i < output_len;i++)
adamstark@38 289 {
adamstark@38 290 df512[i] = src_data.data_out[i];
adamstark@38 291 }
adamstark@38 292 }
adamstark@38 293
adamstark@38 294 //-------------------------------------------------------------------------------
adamstark@38 295 // To calculate the current tempo expressed as the beat period in detection function samples
adamstark@38 296 void BTrack :: calcTempo()
adamstark@38 297 {
adamstark@38 298 // adaptive threshold on input
adamstark@38 299 adapt_thresh(df512,512);
adamstark@38 300
adamstark@38 301 // calculate auto-correlation function of detection function
adamstark@38 302 acf_bal(df512);
adamstark@38 303
adamstark@38 304 // calculate output of comb filterbank
adamstark@38 305 getrcfoutput();
adamstark@38 306
adamstark@38 307
adamstark@38 308 // adaptive threshold on rcf
adamstark@38 309 adapt_thresh(rcf,128);
adamstark@38 310
adamstark@38 311
adamstark@38 312 int t_index;
adamstark@38 313 int t_index2;
adamstark@38 314 // calculate tempo observation vector from bperiod observation vector
adamstark@38 315 for (int i = 0;i < 41;i++)
adamstark@38 316 {
adamstark@38 317 t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@38 318 t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@38 319
adamstark@38 320
adamstark@38 321 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@38 322 }
adamstark@38 323
adamstark@38 324
adamstark@38 325 float maxval;
adamstark@38 326 float maxind;
adamstark@38 327 float curval;
adamstark@38 328
adamstark@38 329 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@38 330 if (tempofix == 1)
adamstark@38 331 {
adamstark@38 332 for (int k = 0;k < 41;k++)
adamstark@38 333 {
adamstark@38 334 prev_delta[k] = prev_delta_fix[k];
adamstark@38 335 }
adamstark@38 336 }
adamstark@38 337
adamstark@38 338 for (int j=0;j < 41;j++)
adamstark@38 339 {
adamstark@38 340 maxval = -1;
adamstark@38 341 for (int i = 0;i < 41;i++)
adamstark@38 342 {
adamstark@38 343 curval = prev_delta[i]*t_tmat[i][j];
adamstark@38 344
adamstark@38 345 if (curval > maxval)
adamstark@38 346 {
adamstark@38 347 maxval = curval;
adamstark@38 348 }
adamstark@38 349 }
adamstark@38 350
adamstark@38 351 delta[j] = maxval*t_obs[j];
adamstark@38 352 }
adamstark@38 353
adamstark@38 354
adamstark@38 355 normalise(delta,41);
adamstark@38 356
adamstark@38 357 maxind = -1;
adamstark@38 358 maxval = -1;
adamstark@38 359
adamstark@38 360 for (int j=0;j < 41;j++)
adamstark@38 361 {
adamstark@38 362 if (delta[j] > maxval)
adamstark@38 363 {
adamstark@38 364 maxval = delta[j];
adamstark@38 365 maxind = j;
adamstark@38 366 }
adamstark@38 367
adamstark@38 368 prev_delta[j] = delta[j];
adamstark@38 369 }
adamstark@38 370
adamstark@38 371 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@38 372
adamstark@38 373 if (bperiod > 0)
adamstark@38 374 {
adamstark@38 375 est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@38 376 }
adamstark@38 377
adamstark@38 378 //cout << bperiod << endl;
adamstark@38 379 }
adamstark@38 380
adamstark@38 381 //-------------------------------------------------------------------------------
adamstark@38 382 // calculates an adaptive threshold which is used to remove low level energy from detection function and emphasise peaks
adamstark@38 383 void BTrack :: adapt_thresh(float x[],int N)
adamstark@38 384 {
adamstark@38 385 //int N = 512; // length of df
adamstark@38 386 int i = 0;
adamstark@38 387 int k,t = 0;
adamstark@38 388 float x_thresh[N];
adamstark@38 389
adamstark@38 390 int p_post = 7;
adamstark@38 391 int p_pre = 8;
adamstark@38 392
adamstark@38 393 t = min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@38 394
adamstark@38 395 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@38 396 for (i = 0;i <= t;i++)
adamstark@38 397 {
adamstark@38 398 k = min((i+p_pre),N);
adamstark@38 399 x_thresh[i] = mean_array(x,1,k);
adamstark@38 400 }
adamstark@38 401 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@38 402 for (i = t+1;i < N-p_post;i++)
adamstark@38 403 {
adamstark@38 404 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@38 405 }
adamstark@38 406 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@38 407 for (i = N-p_post;i < N;i++)
adamstark@38 408 {
adamstark@38 409 k = max((i-p_post),1);
adamstark@38 410 x_thresh[i] = mean_array(x,k,N);
adamstark@38 411 }
adamstark@38 412
adamstark@38 413 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@38 414 for (i = 0;i < N;i++)
adamstark@38 415 {
adamstark@38 416 x[i] = x[i] - x_thresh[i];
adamstark@38 417 if (x[i] < 0)
adamstark@38 418 {
adamstark@38 419 x[i] = 0;
adamstark@38 420 }
adamstark@38 421 }
adamstark@38 422 }
adamstark@38 423
adamstark@38 424 //-------------------------------------------------------------------------------
adamstark@38 425 // returns the output of the comb filter
adamstark@38 426 void BTrack :: getrcfoutput()
adamstark@38 427 {
adamstark@38 428 int numelem;
adamstark@38 429
adamstark@38 430 for (int i = 0;i < 128;i++)
adamstark@38 431 {
adamstark@38 432 rcf[i] = 0;
adamstark@38 433 }
adamstark@38 434
adamstark@38 435 numelem = 4;
adamstark@38 436
adamstark@38 437 for (int i = 2;i <= 127;i++) // max beat period
adamstark@38 438 {
adamstark@38 439 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@38 440 {
adamstark@38 441 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@38 442 {
adamstark@38 443 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@38 444 }
adamstark@38 445 }
adamstark@38 446 }
adamstark@38 447 }
adamstark@38 448
adamstark@38 449 //-------------------------------------------------------------------------------
adamstark@38 450 // calculates the balanced autocorrelation of the smoothed detection function
adamstark@38 451 void BTrack :: acf_bal(float df_thresh[])
adamstark@38 452 {
adamstark@38 453 int l, n = 0;
adamstark@38 454 float sum, tmp;
adamstark@38 455
adamstark@38 456 // for l lags from 0-511
adamstark@38 457 for (l = 0;l < 512;l++)
adamstark@38 458 {
adamstark@38 459 sum = 0;
adamstark@38 460
adamstark@38 461 // for n samples from 0 - (512-lag)
adamstark@38 462 for (n = 0;n < (512-l);n++)
adamstark@38 463 {
adamstark@38 464 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@38 465 sum = sum + tmp; // add to sum
adamstark@38 466 }
adamstark@38 467
adamstark@38 468 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@38 469 }
adamstark@38 470 }
adamstark@38 471
adamstark@38 472
adamstark@38 473 //-------------------------------------------------------------------------------
adamstark@38 474 // calculates the mean of values in an array from index locations [start,end]
adamstark@38 475 float BTrack :: mean_array(float array[],int start,int end)
adamstark@38 476 {
adamstark@38 477 int i;
adamstark@38 478 double sum = 0;
adamstark@38 479
adamstark@38 480 int length = end - start;
adamstark@38 481
adamstark@38 482 // find sum
adamstark@38 483 for (i = start;i < end;i++)
adamstark@38 484 {
adamstark@38 485 sum = sum + array[i];
adamstark@38 486 }
adamstark@38 487
adamstark@38 488 if (length > 0)
adamstark@38 489 {
adamstark@38 490 return sum / length; // average and return
adamstark@38 491 }
adamstark@38 492 else
adamstark@38 493 {
adamstark@38 494 return 0;
adamstark@38 495 }
adamstark@38 496 }
adamstark@38 497
adamstark@38 498 //-------------------------------------------------------------------------------
adamstark@38 499 // normalise the array
adamstark@38 500 void BTrack :: normalise(float array[],int N)
adamstark@38 501 {
adamstark@38 502 double sum = 0;
adamstark@38 503
adamstark@38 504 for (int i = 0;i < N;i++)
adamstark@38 505 {
adamstark@38 506 if (array[i] > 0)
adamstark@38 507 {
adamstark@38 508 sum = sum + array[i];
adamstark@38 509 }
adamstark@38 510 }
adamstark@38 511
adamstark@38 512 if (sum > 0)
adamstark@38 513 {
adamstark@38 514 for (int i = 0;i < N;i++)
adamstark@38 515 {
adamstark@38 516 array[i] = array[i] / sum;
adamstark@38 517 }
adamstark@38 518 }
adamstark@38 519 }
adamstark@38 520
adamstark@38 521 //-------------------------------------------------------------------------------
adamstark@38 522 // plot contents of detection function buffer
adamstark@38 523 void BTrack :: plotdfbuffer()
adamstark@38 524 {
adamstark@38 525 for (int i=0;i < dfbuffer_size;i++)
adamstark@38 526 {
adamstark@38 527 cout << dfbuffer[i] << endl;
adamstark@38 528 }
adamstark@38 529
adamstark@38 530 cout << "--------------------------------" << endl;
adamstark@38 531 }
adamstark@38 532
adamstark@38 533 //-------------------------------------------------------------------------------
adamstark@38 534 // update the cumulative score
adamstark@38 535 void BTrack :: updatecumscore(float df_sample)
adamstark@38 536 {
adamstark@38 537 int start, end, winsize;
adamstark@38 538 float max;
adamstark@38 539
adamstark@38 540 start = dfbuffer_size - round(2*bperiod);
adamstark@38 541 end = dfbuffer_size - round(bperiod/2);
adamstark@38 542 winsize = end-start+1;
adamstark@38 543
adamstark@38 544 float w1[winsize];
adamstark@38 545 float v = -2*bperiod;
adamstark@38 546 float wcumscore;
adamstark@38 547
adamstark@38 548
adamstark@38 549 // create window
adamstark@38 550 for (int i = 0;i < winsize;i++)
adamstark@38 551 {
adamstark@38 552 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@38 553 v = v+1;
adamstark@38 554 }
adamstark@38 555
adamstark@38 556 // calculate new cumulative score value
adamstark@38 557 max = 0;
adamstark@38 558 int n = 0;
adamstark@38 559 for (int i=start;i <= end;i++)
adamstark@38 560 {
adamstark@38 561 wcumscore = cumscore[i]*w1[n];
adamstark@38 562
adamstark@38 563 if (wcumscore > max)
adamstark@38 564 {
adamstark@38 565 max = wcumscore;
adamstark@38 566 }
adamstark@38 567 n++;
adamstark@38 568 }
adamstark@38 569
adamstark@38 570
adamstark@38 571 // shift cumulative score back one
adamstark@38 572 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@38 573 {
adamstark@38 574 cumscore[i] = cumscore[i+1];
adamstark@38 575 }
adamstark@38 576
adamstark@38 577 // add new value to cumulative score
adamstark@38 578 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@38 579
adamstark@38 580 cscoreval = cumscore[dfbuffer_size-1];
adamstark@38 581
adamstark@38 582 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@38 583
adamstark@38 584 }
adamstark@38 585
adamstark@38 586 //-------------------------------------------------------------------------------
adamstark@38 587 // plot contents of detection function buffer
adamstark@38 588 void BTrack :: predictbeat()
adamstark@38 589 {
adamstark@38 590 int winsize = (int) bperiod;
adamstark@38 591 float fcumscore[dfbuffer_size + winsize];
adamstark@38 592 float w2[winsize];
adamstark@38 593 // copy cumscore to first part of fcumscore
adamstark@38 594 for (int i = 0;i < dfbuffer_size;i++)
adamstark@38 595 {
adamstark@38 596 fcumscore[i] = cumscore[i];
adamstark@38 597 }
adamstark@38 598
adamstark@38 599 // create future window
adamstark@38 600 float v = 1;
adamstark@38 601 for (int i = 0;i < winsize;i++)
adamstark@38 602 {
adamstark@38 603 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@38 604 v++;
adamstark@38 605 }
adamstark@38 606
adamstark@38 607 // create past window
adamstark@38 608 v = -2*bperiod;
adamstark@38 609 int start = dfbuffer_size - round(2*bperiod);
adamstark@38 610 int end = dfbuffer_size - round(bperiod/2);
adamstark@38 611 int pastwinsize = end-start+1;
adamstark@38 612 float w1[pastwinsize];
adamstark@38 613
adamstark@38 614 for (int i = 0;i < pastwinsize;i++)
adamstark@38 615 {
adamstark@38 616 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@38 617 v = v+1;
adamstark@38 618 }
adamstark@38 619
adamstark@38 620
adamstark@38 621
adamstark@38 622 // calculate future cumulative score
adamstark@38 623 float max;
adamstark@38 624 int n;
adamstark@38 625 float wcumscore;
adamstark@38 626 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@38 627 {
adamstark@38 628 start = i - round(2*bperiod);
adamstark@38 629 end = i - round(bperiod/2);
adamstark@38 630
adamstark@38 631 max = 0;
adamstark@38 632 n = 0;
adamstark@38 633 for (int k=start;k <= end;k++)
adamstark@38 634 {
adamstark@38 635 wcumscore = fcumscore[k]*w1[n];
adamstark@38 636
adamstark@38 637 if (wcumscore > max)
adamstark@38 638 {
adamstark@38 639 max = wcumscore;
adamstark@38 640 }
adamstark@38 641 n++;
adamstark@38 642 }
adamstark@38 643
adamstark@38 644 fcumscore[i] = max;
adamstark@38 645 }
adamstark@38 646
adamstark@38 647
adamstark@38 648 // predict beat
adamstark@38 649 max = 0;
adamstark@38 650 n = 0;
adamstark@38 651
adamstark@38 652 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@38 653 {
adamstark@38 654 wcumscore = fcumscore[i]*w2[n];
adamstark@38 655
adamstark@38 656 if (wcumscore > max)
adamstark@38 657 {
adamstark@38 658 max = wcumscore;
adamstark@38 659 beat = n;
adamstark@38 660 }
adamstark@38 661
adamstark@38 662 n++;
adamstark@38 663 }
adamstark@38 664
adamstark@38 665
adamstark@38 666 // set beat
adamstark@38 667 beat = beat;
adamstark@38 668
adamstark@38 669 // set next prediction time
adamstark@38 670 m0 = beat+round(bperiod/2);
adamstark@38 671
adamstark@38 672
adamstark@38 673 }