annotate src/OnsetDetectionFunction.cpp @ 16:73c64ca0ed23 develop

Small syntax change for array arguments so they are pointers rather than array[]. Just personal preference.
author Adam <adamstark.uk@gmail.com>
date Wed, 22 Jan 2014 01:34:04 +0000
parents 2b94d3d2fb9d
children baf35f208814
rev   line source
adamstark@5 1 //=======================================================================
adamstark@5 2 /** @file OnsetDetectionFunction.cpp
adamstark@5 3 * @brief A class for calculating onset detection functions
adamstark@5 4 * @author Adam Stark
adamstark@5 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@5 6 *
adamstark@5 7 * This program is free software: you can redistribute it and/or modify
adamstark@5 8 * it under the terms of the GNU General Public License as published by
adamstark@5 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@5 10 * (at your option) any later version.
adamstark@5 11 *
adamstark@5 12 * This program is distributed in the hope that it will be useful,
adamstark@5 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@5 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@5 15 * GNU General Public License for more details.
adamstark@5 16 *
adamstark@5 17 * You should have received a copy of the GNU General Public License
adamstark@5 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@5 19 */
adamstark@5 20 //=======================================================================
adamstark@5 21
adamstark@5 22 #include <math.h>
adamstark@5 23 #include "OnsetDetectionFunction.h"
adamstark@5 24
adamstark@15 25 //=======================================================================
adamstark@5 26 OnsetDetectionFunction :: OnsetDetectionFunction(int arg_hsize,int arg_fsize,int arg_df_type,int arg_win_type)
adamstark@5 27 {
adamstark@5 28 // indicate that we have not initialised yet
adamstark@5 29 initialised = 0;
adamstark@5 30
adamstark@5 31 // set pi
adamstark@5 32 pi = 3.14159265358979;
adamstark@5 33
adamstark@5 34 // initialise with arguments to constructor
adamstark@5 35 initialise(arg_hsize,arg_fsize,arg_df_type,arg_win_type);
adamstark@5 36 }
adamstark@5 37
adamstark@5 38
adamstark@15 39 //=======================================================================
adamstark@5 40 OnsetDetectionFunction :: ~OnsetDetectionFunction()
adamstark@5 41 {
adamstark@5 42 // destroy fft plan
adamstark@5 43 fftw_destroy_plan(p);
adamstark@5 44 fftw_free(in);
adamstark@5 45 fftw_free(out);
adamstark@5 46
adamstark@5 47 // deallocate memory
adamstark@5 48 delete [] frame;
adamstark@5 49 frame = NULL;
adamstark@5 50 delete [] window;
adamstark@5 51 window = NULL;
adamstark@5 52 delete [] wframe;
adamstark@5 53 wframe = NULL;
adamstark@5 54 delete [] mag;
adamstark@5 55 mag = NULL;
adamstark@5 56 delete [] mag_old;
adamstark@5 57 mag_old = NULL;
adamstark@5 58 delete [] phase;
adamstark@5 59 phase = NULL;
adamstark@5 60 delete [] phase_old;
adamstark@5 61 phase_old = NULL;
adamstark@5 62 delete [] phase_old_2;
adamstark@5 63 phase_old_2 = NULL;
adamstark@5 64 }
adamstark@5 65
adamstark@15 66 //=======================================================================
adamstark@5 67 void OnsetDetectionFunction :: initialise(int arg_hsize,int arg_fsize,int arg_df_type,int arg_win_type)
adamstark@5 68 {
adamstark@5 69 if (initialised == 1) // if we have already initialised some buffers and an FFT plan
adamstark@5 70 {
adamstark@5 71 //////////////////////////////////
adamstark@5 72 // TIDY UP FIRST - If initialise is called after the class has been initialised
adamstark@5 73 // then we want to free up memory and cancel existing FFT plans
adamstark@5 74
adamstark@5 75 // destroy fft plan
adamstark@5 76 fftw_destroy_plan(p);
adamstark@5 77 fftw_free(in);
adamstark@5 78 fftw_free(out);
adamstark@5 79
adamstark@5 80
adamstark@5 81 // deallocate memory
adamstark@5 82 delete [] frame;
adamstark@5 83 frame = NULL;
adamstark@5 84 delete [] window;
adamstark@5 85 window = NULL;
adamstark@5 86 delete [] wframe;
adamstark@5 87 wframe = NULL;
adamstark@5 88 delete [] mag;
adamstark@5 89 mag = NULL;
adamstark@5 90 delete [] mag_old;
adamstark@5 91 mag_old = NULL;
adamstark@5 92 delete [] phase;
adamstark@5 93 phase = NULL;
adamstark@5 94 delete [] phase_old;
adamstark@5 95 phase_old = NULL;
adamstark@5 96 delete [] phase_old_2;
adamstark@5 97 phase_old_2 = NULL;
adamstark@5 98
adamstark@5 99 ////// END TIDY UP ///////////////
adamstark@5 100 //////////////////////////////////
adamstark@5 101 }
adamstark@5 102
adamstark@5 103 hopsize = arg_hsize; // set hopsize
adamstark@5 104 framesize = arg_fsize; // set framesize
adamstark@5 105
adamstark@5 106 df_type = arg_df_type; // set detection function type
adamstark@5 107
adamstark@5 108 // initialise buffers
adamstark@5 109 frame = new double[framesize];
adamstark@5 110 window = new double[framesize];
adamstark@5 111 wframe = new double[framesize];
adamstark@5 112
adamstark@5 113 mag = new double[framesize];
adamstark@5 114 mag_old = new double[framesize];
adamstark@5 115
adamstark@5 116 phase = new double[framesize];
adamstark@5 117 phase_old = new double[framesize];
adamstark@5 118 phase_old_2 = new double[framesize];
adamstark@5 119
adamstark@5 120
adamstark@5 121 // set the window to the specified type
adamstark@5 122 switch (arg_win_type){
adamstark@5 123 case 0:
adamstark@5 124 set_win_rectangular(); // Rectangular window
adamstark@5 125 break;
adamstark@5 126 case 1:
adamstark@5 127 set_win_hanning(); // Hanning Window
adamstark@5 128 break;
adamstark@5 129 case 2:
adamstark@5 130 set_win_hamming(); // Hamming Window
adamstark@5 131 break;
adamstark@5 132 case 3:
adamstark@5 133 set_win_blackman(); // Blackman Window
adamstark@5 134 break;
adamstark@5 135 case 4:
adamstark@5 136 set_win_tukey(); // Tukey Window
adamstark@5 137 break;
adamstark@5 138 default:
adamstark@5 139 set_win_hanning(); // DEFAULT: Hanning Window
adamstark@5 140 }
adamstark@5 141
adamstark@5 142
adamstark@5 143
adamstark@5 144
adamstark@5 145 // initialise previous magnitude spectrum to zero
adamstark@5 146 for (int i = 0;i < framesize;i++)
adamstark@5 147 {
adamstark@5 148 mag_old[i] = 0.0;
adamstark@5 149 phase_old[i] = 0.0;
adamstark@5 150 phase_old_2[i] = 0.0;
adamstark@5 151 frame[i] = 0.0;
adamstark@5 152 }
adamstark@5 153
adamstark@5 154 energy_sum_old = 0.0; // initialise previous energy sum value to zero
adamstark@5 155
adamstark@5 156 /* Init fft */
adamstark@5 157 in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * framesize); // complex array to hold fft data
adamstark@5 158 out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * framesize); // complex array to hold fft data
adamstark@5 159 p = fftw_plan_dft_1d(framesize, in, out, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@5 160
adamstark@5 161 initialised = 1;
adamstark@5 162 }
adamstark@5 163
adamstark@15 164 //=======================================================================
adamstark@5 165 void OnsetDetectionFunction :: set_df_type(int arg_df_type)
adamstark@5 166 {
adamstark@5 167 df_type = arg_df_type; // set detection function type
adamstark@5 168 }
adamstark@5 169
adamstark@15 170 //=======================================================================
adamstark@16 171 double OnsetDetectionFunction :: getDFsample(double *inputbuffer)
adamstark@5 172 {
adamstark@5 173 double df_sample;
adamstark@5 174
adamstark@5 175 // shift audio samples back in frame by hop size
adamstark@5 176 for (int i = 0; i < (framesize-hopsize);i++)
adamstark@5 177 {
adamstark@5 178 frame[i] = frame[i+hopsize];
adamstark@5 179 }
adamstark@5 180
adamstark@5 181 // add new samples to frame from input buffer
adamstark@5 182 int j = 0;
adamstark@5 183 for (int i = (framesize-hopsize);i < framesize;i++)
adamstark@5 184 {
adamstark@5 185 frame[i] = inputbuffer[j];
adamstark@5 186 j++;
adamstark@5 187 }
adamstark@5 188
adamstark@5 189 switch (df_type){
adamstark@5 190 case 0:
adamstark@5 191 df_sample = energy_envelope(); // calculate energy envelope detection function sample
adamstark@5 192 break;
adamstark@5 193 case 1:
adamstark@5 194 df_sample = energy_difference(); // calculate half-wave rectified energy difference detection function sample
adamstark@5 195 break;
adamstark@5 196 case 2:
adamstark@5 197 df_sample = spectral_difference(); // calculate spectral difference detection function sample
adamstark@5 198 break;
adamstark@5 199 case 3:
adamstark@5 200 df_sample = spectral_difference_hwr(); // calculate spectral difference detection function sample (half wave rectified)
adamstark@5 201 break;
adamstark@5 202 case 4:
adamstark@5 203 df_sample = phase_deviation(); // calculate phase deviation detection function sample (half wave rectified)
adamstark@5 204 break;
adamstark@5 205 case 5:
adamstark@5 206 df_sample = complex_spectral_difference(); // calcualte complex spectral difference detection function sample
adamstark@5 207 break;
adamstark@5 208 case 6:
adamstark@5 209 df_sample = complex_spectral_difference_hwr(); // calcualte complex spectral difference detection function sample (half-wave rectified)
adamstark@5 210 break;
adamstark@5 211 case 7:
adamstark@5 212 df_sample = high_frequency_content(); // calculate high frequency content detection function sample
adamstark@5 213 break;
adamstark@5 214 case 8:
adamstark@5 215 df_sample = high_frequency_spectral_difference(); // calculate high frequency spectral difference detection function sample
adamstark@5 216 break;
adamstark@5 217 case 9:
adamstark@5 218 df_sample = high_frequency_spectral_difference_hwr(); // calculate high frequency spectral difference detection function (half-wave rectified)
adamstark@5 219 break;
adamstark@5 220 default:
adamstark@5 221 df_sample = 1.0;
adamstark@5 222 }
adamstark@5 223
adamstark@5 224 return df_sample;
adamstark@5 225 }
adamstark@5 226
adamstark@5 227
adamstark@15 228 //=======================================================================
adamstark@5 229 void OnsetDetectionFunction :: perform_FFT()
adamstark@5 230 {
adamstark@5 231 int fsize2 = (framesize/2);
adamstark@5 232
adamstark@5 233 // window frame and copy to complex array, swapping the first and second half of the signal
adamstark@5 234 for (int i = 0;i < fsize2;i++)
adamstark@5 235 {
adamstark@5 236 in[i][0] = frame[i+fsize2] * window[i+fsize2];
adamstark@5 237 in[i][1] = 0.0;
adamstark@5 238 in[i+fsize2][0] = frame[i] * window[i];
adamstark@5 239 in[i+fsize2][1] = 0.0;
adamstark@5 240 }
adamstark@5 241
adamstark@5 242 // perform the fft
adamstark@5 243 fftw_execute(p);
adamstark@5 244 }
adamstark@5 245
adamstark@5 246 ////////////////////////////////////////////////////////////////////////////////////////////////
adamstark@5 247 ////////////////////////////////////////////////////////////////////////////////////////////////
adamstark@5 248 ////////////////////////////// Methods for Detection Functions /////////////////////////////////
adamstark@5 249
adamstark@15 250 //=======================================================================
adamstark@5 251 double OnsetDetectionFunction :: energy_envelope()
adamstark@5 252 {
adamstark@5 253 double sum;
adamstark@5 254
adamstark@5 255 sum = 0; // initialise sum
adamstark@5 256
adamstark@5 257 // sum the squares of the samples
adamstark@5 258 for (int i = 0;i < framesize;i++)
adamstark@5 259 {
adamstark@5 260 sum = sum + (frame[i]*frame[i]);
adamstark@5 261 }
adamstark@5 262
adamstark@5 263 return sum; // return sum
adamstark@5 264 }
adamstark@5 265
adamstark@15 266 //=======================================================================
adamstark@5 267 double OnsetDetectionFunction :: energy_difference()
adamstark@5 268 {
adamstark@5 269 double sum;
adamstark@5 270 double sample;
adamstark@5 271
adamstark@5 272 sum = 0; // initialise sum
adamstark@5 273
adamstark@5 274 // sum the squares of the samples
adamstark@5 275 for (int i = 0;i < framesize;i++)
adamstark@5 276 {
adamstark@5 277 sum = sum + (frame[i]*frame[i]);
adamstark@5 278 }
adamstark@5 279
adamstark@5 280 sample = sum - energy_sum_old; // sample is first order difference in energy
adamstark@5 281
adamstark@5 282 energy_sum_old = sum; // store energy value for next calculation
adamstark@5 283
adamstark@5 284 if (sample > 0)
adamstark@5 285 {
adamstark@5 286 return sample; // return difference
adamstark@5 287 }
adamstark@5 288 else
adamstark@5 289 {
adamstark@5 290 return 0;
adamstark@5 291 }
adamstark@5 292 }
adamstark@5 293
adamstark@15 294 //=======================================================================
adamstark@5 295 double OnsetDetectionFunction :: spectral_difference()
adamstark@5 296 {
adamstark@5 297 double diff;
adamstark@5 298 double sum;
adamstark@5 299
adamstark@5 300 // perform the FFT
adamstark@5 301 perform_FFT();
adamstark@5 302
adamstark@5 303 // compute first (N/2)+1 mag values
adamstark@5 304 for (int i = 0;i < (framesize/2)+1;i++)
adamstark@5 305 {
adamstark@5 306 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 307 }
adamstark@5 308 // mag spec symmetric above (N/2)+1 so copy previous values
adamstark@5 309 for (int i = (framesize/2)+1;i < framesize;i++)
adamstark@5 310 {
adamstark@5 311 mag[i] = mag[framesize-i];
adamstark@5 312 }
adamstark@5 313
adamstark@5 314 sum = 0; // initialise sum to zero
adamstark@5 315
adamstark@5 316 for (int i = 0;i < framesize;i++)
adamstark@5 317 {
adamstark@5 318 // calculate difference
adamstark@5 319 diff = mag[i] - mag_old[i];
adamstark@5 320
adamstark@5 321 // ensure all difference values are positive
adamstark@5 322 if (diff < 0)
adamstark@5 323 {
adamstark@5 324 diff = diff*-1;
adamstark@5 325 }
adamstark@5 326
adamstark@5 327 // add difference to sum
adamstark@5 328 sum = sum+diff;
adamstark@5 329
adamstark@5 330 // store magnitude spectrum bin for next detection function sample calculation
adamstark@5 331 mag_old[i] = mag[i];
adamstark@5 332 }
adamstark@5 333
adamstark@5 334 return sum;
adamstark@5 335 }
adamstark@5 336
adamstark@15 337 //=======================================================================
adamstark@5 338 double OnsetDetectionFunction :: spectral_difference_hwr()
adamstark@5 339 {
adamstark@5 340 double diff;
adamstark@5 341 double sum;
adamstark@5 342
adamstark@5 343 // perform the FFT
adamstark@5 344 perform_FFT();
adamstark@5 345
adamstark@5 346 // compute first (N/2)+1 mag values
adamstark@5 347 for (int i = 0;i < (framesize/2)+1;i++)
adamstark@5 348 {
adamstark@5 349 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 350 }
adamstark@5 351 // mag spec symmetric above (N/2)+1 so copy previous values
adamstark@5 352 for (int i = (framesize/2)+1;i < framesize;i++)
adamstark@5 353 {
adamstark@5 354 mag[i] = mag[framesize-i];
adamstark@5 355 }
adamstark@5 356
adamstark@5 357 sum = 0; // initialise sum to zero
adamstark@5 358
adamstark@5 359 for (int i = 0;i < framesize;i++)
adamstark@5 360 {
adamstark@5 361 // calculate difference
adamstark@5 362 diff = mag[i] - mag_old[i];
adamstark@5 363
adamstark@5 364 // only add up positive differences
adamstark@5 365 if (diff > 0)
adamstark@5 366 {
adamstark@5 367 // add difference to sum
adamstark@5 368 sum = sum+diff;
adamstark@5 369 }
adamstark@5 370
adamstark@5 371
adamstark@5 372
adamstark@5 373 // store magnitude spectrum bin for next detection function sample calculation
adamstark@5 374 mag_old[i] = mag[i];
adamstark@5 375 }
adamstark@5 376
adamstark@5 377 return sum;
adamstark@5 378 }
adamstark@5 379
adamstark@5 380
adamstark@15 381 //=======================================================================
adamstark@5 382 double OnsetDetectionFunction :: phase_deviation()
adamstark@5 383 {
adamstark@5 384 double dev,pdev;
adamstark@5 385 double sum;
adamstark@5 386
adamstark@5 387 // perform the FFT
adamstark@5 388 perform_FFT();
adamstark@5 389
adamstark@5 390 sum = 0; // initialise sum to zero
adamstark@5 391
adamstark@5 392 // compute phase values from fft output and sum deviations
adamstark@5 393 for (int i = 0;i < framesize;i++)
adamstark@5 394 {
adamstark@5 395 // calculate phase value
adamstark@5 396 phase[i] = atan2(out[i][1],out[i][0]);
adamstark@5 397
adamstark@5 398 // calculate magnitude value
adamstark@5 399 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 400
adamstark@5 401
adamstark@5 402 // if bin is not just a low energy bin then examine phase deviation
adamstark@5 403 if (mag[i] > 0.1)
adamstark@5 404 {
adamstark@5 405 dev = phase[i] - (2*phase_old[i]) + phase_old_2[i]; // phase deviation
adamstark@5 406 pdev = princarg(dev); // wrap into [-pi,pi] range
adamstark@5 407
adamstark@5 408 // make all values positive
adamstark@5 409 if (pdev < 0)
adamstark@5 410 {
adamstark@5 411 pdev = pdev*-1;
adamstark@5 412 }
adamstark@5 413
adamstark@5 414 // add to sum
adamstark@5 415 sum = sum + pdev;
adamstark@5 416 }
adamstark@5 417
adamstark@5 418 // store values for next calculation
adamstark@5 419 phase_old_2[i] = phase_old[i];
adamstark@5 420 phase_old[i] = phase[i];
adamstark@5 421 }
adamstark@5 422
adamstark@5 423 return sum;
adamstark@5 424 }
adamstark@5 425
adamstark@15 426 //=======================================================================
adamstark@5 427 double OnsetDetectionFunction :: complex_spectral_difference()
adamstark@5 428 {
adamstark@5 429 double dev,pdev;
adamstark@5 430 double sum;
adamstark@5 431 double mag_diff,phase_diff;
adamstark@5 432 double value;
adamstark@5 433
adamstark@5 434 // perform the FFT
adamstark@5 435 perform_FFT();
adamstark@5 436
adamstark@5 437 sum = 0; // initialise sum to zero
adamstark@5 438
adamstark@5 439 // compute phase values from fft output and sum deviations
adamstark@5 440 for (int i = 0;i < framesize;i++)
adamstark@5 441 {
adamstark@5 442 // calculate phase value
adamstark@5 443 phase[i] = atan2(out[i][1],out[i][0]);
adamstark@5 444
adamstark@5 445 // calculate magnitude value
adamstark@5 446 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 447
adamstark@5 448
adamstark@5 449 // phase deviation
adamstark@5 450 dev = phase[i] - (2*phase_old[i]) + phase_old_2[i];
adamstark@5 451
adamstark@5 452 // wrap into [-pi,pi] range
adamstark@5 453 pdev = princarg(dev);
adamstark@5 454
adamstark@5 455
adamstark@5 456 // calculate magnitude difference (real part of Euclidean distance between complex frames)
adamstark@5 457 mag_diff = mag[i] - mag_old[i];
adamstark@5 458
adamstark@5 459 // calculate phase difference (imaginary part of Euclidean distance between complex frames)
adamstark@5 460 phase_diff = -mag[i]*sin(pdev);
adamstark@5 461
adamstark@5 462
adamstark@5 463
adamstark@5 464 // square real and imaginary parts, sum and take square root
adamstark@5 465 value = sqrt(pow(mag_diff,2) + pow(phase_diff,2));
adamstark@5 466
adamstark@5 467
adamstark@5 468 // add to sum
adamstark@5 469 sum = sum + value;
adamstark@5 470
adamstark@5 471
adamstark@5 472 // store values for next calculation
adamstark@5 473 phase_old_2[i] = phase_old[i];
adamstark@5 474 phase_old[i] = phase[i];
adamstark@5 475 mag_old[i] = mag[i];
adamstark@5 476 }
adamstark@5 477
adamstark@5 478 return sum;
adamstark@5 479 }
adamstark@5 480
adamstark@15 481 //=======================================================================
adamstark@5 482 double OnsetDetectionFunction :: complex_spectral_difference_hwr()
adamstark@5 483 {
adamstark@5 484 double dev,pdev;
adamstark@5 485 double sum;
adamstark@5 486 double mag_diff,phase_diff;
adamstark@5 487 double value;
adamstark@5 488
adamstark@5 489 // perform the FFT
adamstark@5 490 perform_FFT();
adamstark@5 491
adamstark@5 492 sum = 0; // initialise sum to zero
adamstark@5 493
adamstark@5 494 // compute phase values from fft output and sum deviations
adamstark@5 495 for (int i = 0;i < framesize;i++)
adamstark@5 496 {
adamstark@5 497 // calculate phase value
adamstark@5 498 phase[i] = atan2(out[i][1],out[i][0]);
adamstark@5 499
adamstark@5 500 // calculate magnitude value
adamstark@5 501 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 502
adamstark@5 503
adamstark@5 504 // phase deviation
adamstark@5 505 dev = phase[i] - (2*phase_old[i]) + phase_old_2[i];
adamstark@5 506
adamstark@5 507 // wrap into [-pi,pi] range
adamstark@5 508 pdev = princarg(dev);
adamstark@5 509
adamstark@5 510
adamstark@5 511 // calculate magnitude difference (real part of Euclidean distance between complex frames)
adamstark@5 512 mag_diff = mag[i] - mag_old[i];
adamstark@5 513
adamstark@5 514 // if we have a positive change in magnitude, then include in sum, otherwise ignore (half-wave rectification)
adamstark@5 515 if (mag_diff > 0)
adamstark@5 516 {
adamstark@5 517 // calculate phase difference (imaginary part of Euclidean distance between complex frames)
adamstark@5 518 phase_diff = -mag[i]*sin(pdev);
adamstark@5 519
adamstark@5 520 // square real and imaginary parts, sum and take square root
adamstark@5 521 value = sqrt(pow(mag_diff,2) + pow(phase_diff,2));
adamstark@5 522
adamstark@5 523 // add to sum
adamstark@5 524 sum = sum + value;
adamstark@5 525 }
adamstark@5 526
adamstark@5 527 // store values for next calculation
adamstark@5 528 phase_old_2[i] = phase_old[i];
adamstark@5 529 phase_old[i] = phase[i];
adamstark@5 530 mag_old[i] = mag[i];
adamstark@5 531 }
adamstark@5 532
adamstark@5 533 return sum;
adamstark@5 534 }
adamstark@5 535
adamstark@5 536
adamstark@15 537 //=======================================================================
adamstark@5 538 double OnsetDetectionFunction :: high_frequency_content()
adamstark@5 539 {
adamstark@5 540 double sum;
adamstark@5 541
adamstark@5 542 // perform the FFT
adamstark@5 543 perform_FFT();
adamstark@5 544
adamstark@5 545 sum = 0; // initialise sum to zero
adamstark@5 546
adamstark@5 547 // compute phase values from fft output and sum deviations
adamstark@5 548 for (int i = 0;i < framesize;i++)
adamstark@5 549 {
adamstark@5 550 // calculate magnitude value
adamstark@5 551 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 552
adamstark@5 553
adamstark@5 554 sum = sum + (mag[i]*((double) (i+1)));
adamstark@5 555
adamstark@5 556 // store values for next calculation
adamstark@5 557 mag_old[i] = mag[i];
adamstark@5 558 }
adamstark@5 559
adamstark@5 560 return sum;
adamstark@5 561 }
adamstark@5 562
adamstark@15 563 //=======================================================================
adamstark@5 564 double OnsetDetectionFunction :: high_frequency_spectral_difference()
adamstark@5 565 {
adamstark@5 566 double sum;
adamstark@5 567 double mag_diff;
adamstark@5 568
adamstark@5 569 // perform the FFT
adamstark@5 570 perform_FFT();
adamstark@5 571
adamstark@5 572 sum = 0; // initialise sum to zero
adamstark@5 573
adamstark@5 574 // compute phase values from fft output and sum deviations
adamstark@5 575 for (int i = 0;i < framesize;i++)
adamstark@5 576 {
adamstark@5 577 // calculate magnitude value
adamstark@5 578 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 579
adamstark@5 580 // calculate difference
adamstark@5 581 mag_diff = mag[i] - mag_old[i];
adamstark@5 582
adamstark@5 583 if (mag_diff < 0)
adamstark@5 584 {
adamstark@5 585 mag_diff = -mag_diff;
adamstark@5 586 }
adamstark@5 587
adamstark@5 588 sum = sum + (mag_diff*((double) (i+1)));
adamstark@5 589
adamstark@5 590 // store values for next calculation
adamstark@5 591 mag_old[i] = mag[i];
adamstark@5 592 }
adamstark@5 593
adamstark@5 594 return sum;
adamstark@5 595 }
adamstark@5 596
adamstark@15 597 //=======================================================================
adamstark@5 598 double OnsetDetectionFunction :: high_frequency_spectral_difference_hwr()
adamstark@5 599 {
adamstark@5 600 double sum;
adamstark@5 601 double mag_diff;
adamstark@5 602
adamstark@5 603 // perform the FFT
adamstark@5 604 perform_FFT();
adamstark@5 605
adamstark@5 606 sum = 0; // initialise sum to zero
adamstark@5 607
adamstark@5 608 // compute phase values from fft output and sum deviations
adamstark@5 609 for (int i = 0;i < framesize;i++)
adamstark@5 610 {
adamstark@5 611 // calculate magnitude value
adamstark@5 612 mag[i] = sqrt(pow(out[i][0],2) + pow(out[i][1],2));
adamstark@5 613
adamstark@5 614 // calculate difference
adamstark@5 615 mag_diff = mag[i] - mag_old[i];
adamstark@5 616
adamstark@5 617 if (mag_diff > 0)
adamstark@5 618 {
adamstark@5 619 sum = sum + (mag_diff*((double) (i+1)));
adamstark@5 620 }
adamstark@5 621
adamstark@5 622 // store values for next calculation
adamstark@5 623 mag_old[i] = mag[i];
adamstark@5 624 }
adamstark@5 625
adamstark@5 626 return sum;
adamstark@5 627 }
adamstark@5 628
adamstark@5 629
adamstark@5 630 ////////////////////////////////////////////////////////////////////////////////////////////////
adamstark@5 631 ////////////////////////////////////////////////////////////////////////////////////////////////
adamstark@5 632 ////////////////////////////// Methods to Calculate Windows ////////////////////////////////////
adamstark@5 633
adamstark@15 634 //=======================================================================
adamstark@5 635 void OnsetDetectionFunction :: set_win_hanning()
adamstark@5 636 {
adamstark@5 637 double N; // variable to store framesize minus 1
adamstark@5 638
adamstark@5 639 N = (double) (framesize-1); // framesize minus 1
adamstark@5 640
adamstark@5 641 // Hanning window calculation
adamstark@5 642 for (int n = 0;n < framesize;n++)
adamstark@5 643 {
adamstark@5 644 window[n] = 0.5*(1-cos(2*pi*(n/N)));
adamstark@5 645 }
adamstark@5 646 }
adamstark@5 647
adamstark@15 648 //=======================================================================
adamstark@5 649 void OnsetDetectionFunction :: set_win_hamming()
adamstark@5 650 {
adamstark@5 651 double N; // variable to store framesize minus 1
adamstark@5 652 double n_val; // double version of index 'n'
adamstark@5 653
adamstark@5 654 N = (double) (framesize-1); // framesize minus 1
adamstark@5 655 n_val = 0;
adamstark@5 656
adamstark@5 657 // Hamming window calculation
adamstark@5 658 for (int n = 0;n < framesize;n++)
adamstark@5 659 {
adamstark@5 660 window[n] = 0.54 - (0.46*cos(2*pi*(n_val/N)));
adamstark@5 661 n_val = n_val+1;
adamstark@5 662 }
adamstark@5 663 }
adamstark@5 664
adamstark@15 665 //=======================================================================
adamstark@5 666 void OnsetDetectionFunction :: set_win_blackman()
adamstark@5 667 {
adamstark@5 668 double N; // variable to store framesize minus 1
adamstark@5 669 double n_val; // double version of index 'n'
adamstark@5 670
adamstark@5 671 N = (double) (framesize-1); // framesize minus 1
adamstark@5 672 n_val = 0;
adamstark@5 673
adamstark@5 674 // Blackman window calculation
adamstark@5 675 for (int n = 0;n < framesize;n++)
adamstark@5 676 {
adamstark@5 677 window[n] = 0.42 - (0.5*cos(2*pi*(n_val/N))) + (0.08*cos(4*pi*(n_val/N)));
adamstark@5 678 n_val = n_val+1;
adamstark@5 679 }
adamstark@5 680 }
adamstark@5 681
adamstark@15 682 //=======================================================================
adamstark@5 683 void OnsetDetectionFunction :: set_win_tukey()
adamstark@5 684 {
adamstark@5 685 double N; // variable to store framesize minus 1
adamstark@5 686 double n_val; // double version of index 'n'
adamstark@5 687 double alpha; // alpha [default value = 0.5];
adamstark@5 688
adamstark@5 689 alpha = 0.5;
adamstark@5 690
adamstark@5 691 N = (double) (framesize-1); // framesize minus 1
adamstark@5 692
adamstark@5 693 // Tukey window calculation
adamstark@5 694
adamstark@5 695 n_val = (double) (-1*((framesize/2)))+1;
adamstark@5 696
adamstark@5 697 for (int n = 0;n < framesize;n++) // left taper
adamstark@5 698 {
adamstark@5 699 if ((n_val >= 0) && (n_val <= (alpha*(N/2))))
adamstark@5 700 {
adamstark@5 701 window[n] = 1.0;
adamstark@5 702 }
adamstark@5 703 else if ((n_val <= 0) && (n_val >= (-1*alpha*(N/2))))
adamstark@5 704 {
adamstark@5 705 window[n] = 1.0;
adamstark@5 706 }
adamstark@5 707 else
adamstark@5 708 {
adamstark@5 709 window[n] = 0.5*(1+cos(pi*(((2*n_val)/(alpha*N))-1)));
adamstark@5 710 }
adamstark@5 711
adamstark@5 712 n_val = n_val+1;
adamstark@5 713 }
adamstark@5 714
adamstark@5 715 }
adamstark@5 716
adamstark@15 717 //=======================================================================
adamstark@5 718 void OnsetDetectionFunction :: set_win_rectangular()
adamstark@5 719 {
adamstark@5 720 // Rectangular window calculation
adamstark@5 721 for (int n = 0;n < framesize;n++)
adamstark@5 722 {
adamstark@5 723 window[n] = 1.0;
adamstark@5 724 }
adamstark@5 725 }
adamstark@5 726
adamstark@5 727
adamstark@5 728
adamstark@5 729 ////////////////////////////////////////////////////////////////////////////////////////////////
adamstark@5 730 ////////////////////////////////////////////////////////////////////////////////////////////////
adamstark@5 731 ///////////////////////////////// Other Handy Methods //////////////////////////////////////////
adamstark@5 732
adamstark@15 733 //=======================================================================
adamstark@5 734 double OnsetDetectionFunction :: princarg(double phaseval)
adamstark@5 735 {
adamstark@5 736 // if phase value is less than or equal to -pi then add 2*pi
adamstark@5 737 while (phaseval <= (-pi))
adamstark@5 738 {
adamstark@5 739 phaseval = phaseval + (2*pi);
adamstark@5 740 }
adamstark@5 741
adamstark@5 742 // if phase value is larger than pi, then subtract 2*pi
adamstark@5 743 while (phaseval > pi)
adamstark@5 744 {
adamstark@5 745 phaseval = phaseval - (2*pi);
adamstark@5 746 }
adamstark@5 747
adamstark@5 748 return phaseval;
adamstark@5 749 }
adamstark@5 750
adamstark@5 751
adamstark@5 752
adamstark@5 753
adamstark@5 754
adamstark@5 755
adamstark@5 756
adamstark@5 757
adamstark@5 758
adamstark@5 759
adamstark@5 760
adamstark@5 761
adamstark@5 762