annotate src/BTrack.cpp @ 16:73c64ca0ed23 develop

Small syntax change for array arguments so they are pointers rather than array[]. Just personal preference.
author Adam <adamstark.uk@gmail.com>
date Wed, 22 Jan 2014 01:34:04 +0000
parents 2b94d3d2fb9d
children a31841af2bbc
rev   line source
adamstark@5 1 //=======================================================================
adamstark@5 2 /** @file BTrack.cpp
adamstark@6 3 * @brief BTrack - a real-time beat tracker
adamstark@5 4 * @author Adam Stark
adamstark@5 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@5 6 *
adamstark@5 7 * This program is free software: you can redistribute it and/or modify
adamstark@5 8 * it under the terms of the GNU General Public License as published by
adamstark@5 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@5 10 * (at your option) any later version.
adamstark@5 11 *
adamstark@5 12 * This program is distributed in the hope that it will be useful,
adamstark@5 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@5 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@5 15 * GNU General Public License for more details.
adamstark@5 16 *
adamstark@5 17 * You should have received a copy of the GNU General Public License
adamstark@5 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@5 19 */
adamstark@5 20 //=======================================================================
adamstark@5 21
adamstark@5 22 #include <cmath>
adamstark@15 23 #include <algorithm>
adamstark@5 24 #include "BTrack.h"
adamstark@5 25 #include "samplerate.h"
adamstark@5 26
adamstark@5 27
adamstark@14 28 //=======================================================================
adamstark@5 29 BTrack :: BTrack()
adamstark@5 30 {
adamstark@5 31 float rayparam = 43;
adamstark@5 32 float pi = 3.14159265;
adamstark@5 33
adamstark@5 34
adamstark@5 35 // initialise parameters
adamstark@5 36 tightness = 5;
adamstark@5 37 alpha = 0.9;
adamstark@5 38 tempo = 120;
adamstark@5 39 est_tempo = 120;
adamstark@5 40 p_fact = 60.*44100./512.;
adamstark@5 41
adamstark@5 42 m0 = 10;
adamstark@5 43 beat = -1;
adamstark@5 44
adamstark@5 45 playbeat = 0;
adamstark@5 46
adamstark@5 47
adamstark@5 48
adamstark@5 49
adamstark@5 50 // create rayleigh weighting vector
adamstark@5 51 for (int n = 0;n < 128;n++)
adamstark@5 52 {
adamstark@5 53 wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@5 54 }
adamstark@5 55
adamstark@5 56 // initialise prev_delta
adamstark@5 57 for (int i = 0;i < 41;i++)
adamstark@5 58 {
adamstark@5 59 prev_delta[i] = 1;
adamstark@5 60 }
adamstark@5 61
adamstark@5 62 float t_mu = 41/2;
adamstark@5 63 float m_sig;
adamstark@5 64 float x;
adamstark@5 65 // create tempo transition matrix
adamstark@5 66 m_sig = 41/8;
adamstark@5 67 for (int i = 0;i < 41;i++)
adamstark@5 68 {
adamstark@5 69 for (int j = 0;j < 41;j++)
adamstark@5 70 {
adamstark@5 71 x = j+1;
adamstark@5 72 t_mu = i+1;
adamstark@5 73 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@5 74 }
adamstark@5 75 }
adamstark@5 76
adamstark@5 77 // tempo is not fixed
adamstark@5 78 tempofix = 0;
adamstark@5 79 }
adamstark@5 80
adamstark@14 81 //=======================================================================
adamstark@5 82 BTrack :: ~BTrack()
adamstark@5 83 {
adamstark@5 84
adamstark@5 85 }
adamstark@5 86
adamstark@14 87
adamstark@14 88
adamstark@14 89 //=======================================================================
adamstark@5 90 void BTrack :: initialise(int fsize)
adamstark@5 91 {
adamstark@5 92 framesize = fsize;
adamstark@5 93 dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@5 94
adamstark@5 95 bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@5 96
adamstark@5 97 dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@5 98 cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@5 99
adamstark@5 100
adamstark@5 101 // initialise df_buffer to zeros
adamstark@5 102 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 103 {
adamstark@5 104 dfbuffer[i] = 0;
adamstark@5 105 cumscore[i] = 0;
adamstark@5 106
adamstark@5 107
adamstark@5 108 if ((i % ((int) round(bperiod))) == 0)
adamstark@5 109 {
adamstark@5 110 dfbuffer[i] = 1;
adamstark@5 111 }
adamstark@5 112 }
adamstark@5 113 }
adamstark@5 114
adamstark@14 115 //=======================================================================
adamstark@5 116 void BTrack :: process(float df_sample)
adamstark@5 117 {
adamstark@5 118 m0--;
adamstark@5 119 beat--;
adamstark@5 120 playbeat = 0;
adamstark@5 121
adamstark@5 122 // move all samples back one step
adamstark@5 123 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@5 124 {
adamstark@5 125 dfbuffer[i] = dfbuffer[i+1];
adamstark@5 126 }
adamstark@5 127
adamstark@5 128 // add new sample at the end
adamstark@5 129 dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@5 130
adamstark@5 131 // update cumulative score
adamstark@5 132 updatecumscore(df_sample);
adamstark@5 133
adamstark@5 134 // if we are halfway between beats
adamstark@5 135 if (m0 == 0)
adamstark@5 136 {
adamstark@5 137 predictbeat();
adamstark@5 138 }
adamstark@5 139
adamstark@5 140 // if we are at a beat
adamstark@5 141 if (beat == 0)
adamstark@5 142 {
adamstark@5 143 playbeat = 1; // indicate a beat should be output
adamstark@5 144
adamstark@5 145 // recalculate the tempo
adamstark@5 146 dfconvert();
adamstark@5 147 calcTempo();
adamstark@5 148 }
adamstark@5 149 }
adamstark@5 150
adamstark@14 151 //=======================================================================
adamstark@5 152 void BTrack :: settempo(float tempo)
adamstark@5 153 {
adamstark@5 154
adamstark@5 155 /////////// TEMPO INDICATION RESET //////////////////
adamstark@5 156
adamstark@5 157 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 158 while (tempo > 160)
adamstark@5 159 {
adamstark@5 160 tempo = tempo/2;
adamstark@5 161 }
adamstark@5 162
adamstark@5 163 while (tempo < 80)
adamstark@5 164 {
adamstark@5 165 tempo = tempo * 2;
adamstark@5 166 }
adamstark@5 167
adamstark@5 168 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 169 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 170
adamstark@5 171 // now set previous tempo observations to zero
adamstark@5 172 for (int i=0;i < 41;i++)
adamstark@5 173 {
adamstark@5 174 prev_delta[i] = 0;
adamstark@5 175 }
adamstark@5 176
adamstark@5 177 // set desired tempo index to 1
adamstark@5 178 prev_delta[tempo_index] = 1;
adamstark@5 179
adamstark@5 180
adamstark@5 181 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@5 182
adamstark@5 183 // calculate new beat period
adamstark@5 184 int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@5 185
adamstark@5 186 int bcounter = 1;
adamstark@5 187 // initialise df_buffer to zeros
adamstark@5 188 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@5 189 {
adamstark@5 190 if (bcounter == 1)
adamstark@5 191 {
adamstark@5 192 cumscore[i] = 150;
adamstark@5 193 dfbuffer[i] = 150;
adamstark@5 194 }
adamstark@5 195 else
adamstark@5 196 {
adamstark@5 197 cumscore[i] = 10;
adamstark@5 198 dfbuffer[i] = 10;
adamstark@5 199 }
adamstark@5 200
adamstark@5 201 bcounter++;
adamstark@5 202
adamstark@5 203 if (bcounter > new_bperiod)
adamstark@5 204 {
adamstark@5 205 bcounter = 1;
adamstark@5 206 }
adamstark@5 207 }
adamstark@5 208
adamstark@5 209 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@5 210
adamstark@5 211 // beat is now
adamstark@5 212 beat = 0;
adamstark@5 213
adamstark@5 214 // offbeat is half of new beat period away
adamstark@5 215 m0 = (int) round(((float) new_bperiod)/2);
adamstark@5 216 }
adamstark@5 217
adamstark@14 218 //=======================================================================
adamstark@5 219 void BTrack :: fixtempo(float tempo)
adamstark@5 220 {
adamstark@5 221 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 222 while (tempo > 160)
adamstark@5 223 {
adamstark@5 224 tempo = tempo/2;
adamstark@5 225 }
adamstark@5 226
adamstark@5 227 while (tempo < 80)
adamstark@5 228 {
adamstark@5 229 tempo = tempo * 2;
adamstark@5 230 }
adamstark@5 231
adamstark@5 232 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 233 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 234
adamstark@5 235 // now set previous fixed previous tempo observation values to zero
adamstark@5 236 for (int i=0;i < 41;i++)
adamstark@5 237 {
adamstark@5 238 prev_delta_fix[i] = 0;
adamstark@5 239 }
adamstark@5 240
adamstark@5 241 // set desired tempo index to 1
adamstark@5 242 prev_delta_fix[tempo_index] = 1;
adamstark@5 243
adamstark@5 244 // set the tempo fix flag
adamstark@5 245 tempofix = 1;
adamstark@5 246 }
adamstark@5 247
adamstark@14 248 //=======================================================================
adamstark@5 249 void BTrack :: unfixtempo()
adamstark@5 250 {
adamstark@5 251 // set the tempo fix flag
adamstark@5 252 tempofix = 0;
adamstark@5 253 }
adamstark@5 254
adamstark@14 255 //=======================================================================
adamstark@5 256 void BTrack :: dfconvert()
adamstark@5 257 {
adamstark@5 258 float output[512];
adamstark@5 259
adamstark@5 260 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@5 261 int BUFFER_LEN = dfbuffer_size;
adamstark@5 262 int output_len;
adamstark@5 263 SRC_DATA src_data ;
adamstark@5 264
adamstark@5 265 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@5 266 output_len = 512;
adamstark@5 267
adamstark@5 268 src_data.data_in = dfbuffer;
adamstark@5 269 src_data.input_frames = BUFFER_LEN;
adamstark@5 270
adamstark@5 271 src_data.src_ratio = src_ratio;
adamstark@5 272
adamstark@5 273 src_data.data_out = output;
adamstark@5 274 src_data.output_frames = output_len;
adamstark@5 275
adamstark@5 276 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@5 277
adamstark@5 278 for (int i = 0;i < output_len;i++)
adamstark@5 279 {
adamstark@5 280 df512[i] = src_data.data_out[i];
adamstark@5 281 }
adamstark@5 282 }
adamstark@5 283
adamstark@14 284 //=======================================================================
adamstark@5 285 void BTrack :: calcTempo()
adamstark@5 286 {
adamstark@5 287 // adaptive threshold on input
adamstark@5 288 adapt_thresh(df512,512);
adamstark@5 289
adamstark@5 290 // calculate auto-correlation function of detection function
adamstark@5 291 acf_bal(df512);
adamstark@5 292
adamstark@5 293 // calculate output of comb filterbank
adamstark@5 294 getrcfoutput();
adamstark@5 295
adamstark@5 296
adamstark@5 297 // adaptive threshold on rcf
adamstark@5 298 adapt_thresh(rcf,128);
adamstark@5 299
adamstark@5 300
adamstark@5 301 int t_index;
adamstark@5 302 int t_index2;
adamstark@5 303 // calculate tempo observation vector from bperiod observation vector
adamstark@5 304 for (int i = 0;i < 41;i++)
adamstark@5 305 {
adamstark@5 306 t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@5 307 t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@5 308
adamstark@5 309
adamstark@5 310 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@5 311 }
adamstark@5 312
adamstark@5 313
adamstark@5 314 float maxval;
adamstark@5 315 float maxind;
adamstark@5 316 float curval;
adamstark@5 317
adamstark@5 318 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@5 319 if (tempofix == 1)
adamstark@5 320 {
adamstark@5 321 for (int k = 0;k < 41;k++)
adamstark@5 322 {
adamstark@5 323 prev_delta[k] = prev_delta_fix[k];
adamstark@5 324 }
adamstark@5 325 }
adamstark@5 326
adamstark@5 327 for (int j=0;j < 41;j++)
adamstark@5 328 {
adamstark@5 329 maxval = -1;
adamstark@5 330 for (int i = 0;i < 41;i++)
adamstark@5 331 {
adamstark@5 332 curval = prev_delta[i]*t_tmat[i][j];
adamstark@5 333
adamstark@5 334 if (curval > maxval)
adamstark@5 335 {
adamstark@5 336 maxval = curval;
adamstark@5 337 }
adamstark@5 338 }
adamstark@5 339
adamstark@5 340 delta[j] = maxval*t_obs[j];
adamstark@5 341 }
adamstark@5 342
adamstark@5 343
adamstark@5 344 normalise(delta,41);
adamstark@5 345
adamstark@5 346 maxind = -1;
adamstark@5 347 maxval = -1;
adamstark@5 348
adamstark@5 349 for (int j=0;j < 41;j++)
adamstark@5 350 {
adamstark@5 351 if (delta[j] > maxval)
adamstark@5 352 {
adamstark@5 353 maxval = delta[j];
adamstark@5 354 maxind = j;
adamstark@5 355 }
adamstark@5 356
adamstark@5 357 prev_delta[j] = delta[j];
adamstark@5 358 }
adamstark@5 359
adamstark@5 360 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@5 361
adamstark@5 362 if (bperiod > 0)
adamstark@5 363 {
adamstark@5 364 est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@5 365 }
adamstark@5 366
adamstark@5 367 //cout << bperiod << endl;
adamstark@5 368 }
adamstark@5 369
adamstark@14 370 //=======================================================================
adamstark@16 371 void BTrack :: adapt_thresh(float *x,int N)
adamstark@5 372 {
adamstark@5 373 //int N = 512; // length of df
adamstark@5 374 int i = 0;
adamstark@5 375 int k,t = 0;
adamstark@5 376 float x_thresh[N];
adamstark@5 377
adamstark@5 378 int p_post = 7;
adamstark@5 379 int p_pre = 8;
adamstark@5 380
adamstark@15 381 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@5 382
adamstark@5 383 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@5 384 for (i = 0;i <= t;i++)
adamstark@5 385 {
adamstark@15 386 k = std::min((i+p_pre),N);
adamstark@5 387 x_thresh[i] = mean_array(x,1,k);
adamstark@5 388 }
adamstark@5 389 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@5 390 for (i = t+1;i < N-p_post;i++)
adamstark@5 391 {
adamstark@5 392 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@5 393 }
adamstark@5 394 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@5 395 for (i = N-p_post;i < N;i++)
adamstark@5 396 {
adamstark@15 397 k = std::max((i-p_post),1);
adamstark@5 398 x_thresh[i] = mean_array(x,k,N);
adamstark@5 399 }
adamstark@5 400
adamstark@5 401 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@5 402 for (i = 0;i < N;i++)
adamstark@5 403 {
adamstark@5 404 x[i] = x[i] - x_thresh[i];
adamstark@5 405 if (x[i] < 0)
adamstark@5 406 {
adamstark@5 407 x[i] = 0;
adamstark@5 408 }
adamstark@5 409 }
adamstark@5 410 }
adamstark@5 411
adamstark@14 412 //=======================================================================
adamstark@5 413 void BTrack :: getrcfoutput()
adamstark@5 414 {
adamstark@5 415 int numelem;
adamstark@5 416
adamstark@5 417 for (int i = 0;i < 128;i++)
adamstark@5 418 {
adamstark@5 419 rcf[i] = 0;
adamstark@5 420 }
adamstark@5 421
adamstark@5 422 numelem = 4;
adamstark@5 423
adamstark@5 424 for (int i = 2;i <= 127;i++) // max beat period
adamstark@5 425 {
adamstark@5 426 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@5 427 {
adamstark@5 428 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@5 429 {
adamstark@5 430 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@5 431 }
adamstark@5 432 }
adamstark@5 433 }
adamstark@5 434 }
adamstark@5 435
adamstark@14 436 //=======================================================================
adamstark@16 437 void BTrack :: acf_bal(float *df_thresh)
adamstark@5 438 {
adamstark@5 439 int l, n = 0;
adamstark@5 440 float sum, tmp;
adamstark@5 441
adamstark@5 442 // for l lags from 0-511
adamstark@5 443 for (l = 0;l < 512;l++)
adamstark@5 444 {
adamstark@5 445 sum = 0;
adamstark@5 446
adamstark@5 447 // for n samples from 0 - (512-lag)
adamstark@5 448 for (n = 0;n < (512-l);n++)
adamstark@5 449 {
adamstark@5 450 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@5 451 sum = sum + tmp; // add to sum
adamstark@5 452 }
adamstark@5 453
adamstark@5 454 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@5 455 }
adamstark@5 456 }
adamstark@5 457
adamstark@14 458 //=======================================================================
adamstark@16 459 float BTrack :: mean_array(float *array,int start,int end)
adamstark@5 460 {
adamstark@5 461 int i;
adamstark@6 462 double sum = 0;
adamstark@6 463
adamstark@6 464 int length = end - start;
adamstark@5 465
adamstark@5 466 // find sum
adamstark@6 467 for (i = start;i < end;i++)
adamstark@5 468 {
adamstark@5 469 sum = sum + array[i];
adamstark@5 470 }
adamstark@5 471
adamstark@6 472 if (length > 0)
adamstark@6 473 {
adamstark@6 474 return sum / length; // average and return
adamstark@6 475 }
adamstark@6 476 else
adamstark@6 477 {
adamstark@6 478 return 0;
adamstark@6 479 }
adamstark@5 480 }
adamstark@5 481
adamstark@14 482 //=======================================================================
adamstark@16 483 void BTrack :: normalise(float *array,int N)
adamstark@5 484 {
adamstark@5 485 double sum = 0;
adamstark@5 486
adamstark@5 487 for (int i = 0;i < N;i++)
adamstark@5 488 {
adamstark@5 489 if (array[i] > 0)
adamstark@5 490 {
adamstark@5 491 sum = sum + array[i];
adamstark@5 492 }
adamstark@5 493 }
adamstark@5 494
adamstark@5 495 if (sum > 0)
adamstark@5 496 {
adamstark@5 497 for (int i = 0;i < N;i++)
adamstark@5 498 {
adamstark@5 499 array[i] = array[i] / sum;
adamstark@5 500 }
adamstark@5 501 }
adamstark@5 502 }
adamstark@5 503
adamstark@14 504 //=======================================================================
adamstark@5 505 void BTrack :: updatecumscore(float df_sample)
adamstark@5 506 {
adamstark@5 507 int start, end, winsize;
adamstark@5 508 float max;
adamstark@5 509
adamstark@5 510 start = dfbuffer_size - round(2*bperiod);
adamstark@5 511 end = dfbuffer_size - round(bperiod/2);
adamstark@5 512 winsize = end-start+1;
adamstark@5 513
adamstark@5 514 float w1[winsize];
adamstark@5 515 float v = -2*bperiod;
adamstark@5 516 float wcumscore;
adamstark@5 517
adamstark@5 518
adamstark@5 519 // create window
adamstark@5 520 for (int i = 0;i < winsize;i++)
adamstark@5 521 {
adamstark@5 522 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 523 v = v+1;
adamstark@5 524 }
adamstark@5 525
adamstark@5 526 // calculate new cumulative score value
adamstark@5 527 max = 0;
adamstark@5 528 int n = 0;
adamstark@5 529 for (int i=start;i <= end;i++)
adamstark@5 530 {
adamstark@5 531 wcumscore = cumscore[i]*w1[n];
adamstark@5 532
adamstark@5 533 if (wcumscore > max)
adamstark@5 534 {
adamstark@5 535 max = wcumscore;
adamstark@5 536 }
adamstark@5 537 n++;
adamstark@5 538 }
adamstark@5 539
adamstark@5 540
adamstark@5 541 // shift cumulative score back one
adamstark@5 542 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@5 543 {
adamstark@5 544 cumscore[i] = cumscore[i+1];
adamstark@5 545 }
adamstark@5 546
adamstark@5 547 // add new value to cumulative score
adamstark@5 548 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@5 549
adamstark@5 550 cscoreval = cumscore[dfbuffer_size-1];
adamstark@5 551
adamstark@5 552 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@5 553
adamstark@5 554 }
adamstark@5 555
adamstark@14 556 //=======================================================================
adamstark@5 557 void BTrack :: predictbeat()
adamstark@5 558 {
adamstark@5 559 int winsize = (int) bperiod;
adamstark@5 560 float fcumscore[dfbuffer_size + winsize];
adamstark@5 561 float w2[winsize];
adamstark@5 562 // copy cumscore to first part of fcumscore
adamstark@5 563 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 564 {
adamstark@5 565 fcumscore[i] = cumscore[i];
adamstark@5 566 }
adamstark@5 567
adamstark@5 568 // create future window
adamstark@5 569 float v = 1;
adamstark@5 570 for (int i = 0;i < winsize;i++)
adamstark@5 571 {
adamstark@5 572 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@5 573 v++;
adamstark@5 574 }
adamstark@5 575
adamstark@5 576 // create past window
adamstark@5 577 v = -2*bperiod;
adamstark@5 578 int start = dfbuffer_size - round(2*bperiod);
adamstark@5 579 int end = dfbuffer_size - round(bperiod/2);
adamstark@5 580 int pastwinsize = end-start+1;
adamstark@5 581 float w1[pastwinsize];
adamstark@5 582
adamstark@5 583 for (int i = 0;i < pastwinsize;i++)
adamstark@5 584 {
adamstark@5 585 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 586 v = v+1;
adamstark@5 587 }
adamstark@5 588
adamstark@5 589
adamstark@5 590
adamstark@5 591 // calculate future cumulative score
adamstark@5 592 float max;
adamstark@5 593 int n;
adamstark@5 594 float wcumscore;
adamstark@5 595 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 596 {
adamstark@5 597 start = i - round(2*bperiod);
adamstark@5 598 end = i - round(bperiod/2);
adamstark@5 599
adamstark@5 600 max = 0;
adamstark@5 601 n = 0;
adamstark@5 602 for (int k=start;k <= end;k++)
adamstark@5 603 {
adamstark@5 604 wcumscore = fcumscore[k]*w1[n];
adamstark@5 605
adamstark@5 606 if (wcumscore > max)
adamstark@5 607 {
adamstark@5 608 max = wcumscore;
adamstark@5 609 }
adamstark@5 610 n++;
adamstark@5 611 }
adamstark@5 612
adamstark@5 613 fcumscore[i] = max;
adamstark@5 614 }
adamstark@5 615
adamstark@5 616
adamstark@5 617 // predict beat
adamstark@5 618 max = 0;
adamstark@5 619 n = 0;
adamstark@5 620
adamstark@5 621 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 622 {
adamstark@5 623 wcumscore = fcumscore[i]*w2[n];
adamstark@5 624
adamstark@5 625 if (wcumscore > max)
adamstark@5 626 {
adamstark@5 627 max = wcumscore;
adamstark@5 628 beat = n;
adamstark@5 629 }
adamstark@5 630
adamstark@5 631 n++;
adamstark@5 632 }
adamstark@5 633
adamstark@5 634
adamstark@5 635 // set beat
adamstark@14 636 //beat = beat;
adamstark@5 637
adamstark@5 638 // set next prediction time
adamstark@5 639 m0 = beat+round(bperiod/2);
adamstark@5 640
adamstark@5 641
adamstark@5 642 }