adamstark@46
|
1 //=======================================================================
|
adamstark@46
|
2 /** @file BTrack.cpp
|
adamstark@47
|
3 * @brief BTrack - a real-time beat tracker
|
adamstark@46
|
4 * @author Adam Stark
|
adamstark@46
|
5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
|
adamstark@46
|
6 *
|
adamstark@46
|
7 * This program is free software: you can redistribute it and/or modify
|
adamstark@46
|
8 * it under the terms of the GNU General Public License as published by
|
adamstark@46
|
9 * the Free Software Foundation, either version 3 of the License, or
|
adamstark@46
|
10 * (at your option) any later version.
|
adamstark@46
|
11 *
|
adamstark@46
|
12 * This program is distributed in the hope that it will be useful,
|
adamstark@46
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
adamstark@46
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
adamstark@46
|
15 * GNU General Public License for more details.
|
adamstark@46
|
16 *
|
adamstark@46
|
17 * You should have received a copy of the GNU General Public License
|
adamstark@46
|
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
adamstark@46
|
19 */
|
adamstark@46
|
20 //=======================================================================
|
adamstark@46
|
21
|
adamstark@46
|
22 #include <cmath>
|
adamstark@52
|
23 #include <algorithm>
|
adamstark@46
|
24 #include "BTrack.h"
|
adamstark@46
|
25 #include "samplerate.h"
|
adamstark@89
|
26 #include <iostream>
|
adamstark@46
|
27
|
adamstark@55
|
28 //=======================================================================
|
adamstark@57
|
29 BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow)
|
adamstark@55
|
30 {
|
adamstark@55
|
31 initialise(512, 1024);
|
adamstark@55
|
32 }
|
adamstark@46
|
33
|
adamstark@51
|
34 //=======================================================================
|
adamstark@57
|
35 BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow)
|
adamstark@46
|
36 {
|
adamstark@57
|
37 initialise(hopSize_, 2*hopSize_);
|
adamstark@55
|
38 }
|
adamstark@55
|
39
|
adamstark@55
|
40 //=======================================================================
|
adamstark@57
|
41 BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow)
|
adamstark@55
|
42 {
|
adamstark@57
|
43 initialise(hopSize_, frameSize_);
|
adamstark@55
|
44 }
|
adamstark@55
|
45
|
adamstark@55
|
46 //=======================================================================
|
adamstark@88
|
47 BTrack::~BTrack()
|
adamstark@88
|
48 {
|
adamstark@88
|
49 // destroy fft plan
|
adamstark@88
|
50 fftw_destroy_plan(acfForwardFFT);
|
adamstark@88
|
51 fftw_destroy_plan(acfBackwardFFT);
|
adamstark@88
|
52 fftw_free(complexIn);
|
adamstark@88
|
53 fftw_free(complexOut);
|
adamstark@88
|
54 }
|
adamstark@88
|
55
|
adamstark@88
|
56 //=======================================================================
|
adamstark@55
|
57 double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
|
adamstark@55
|
58 {
|
adamstark@55
|
59 double hop = (double) hopSize;
|
adamstark@55
|
60 double samplingFrequency = (double) fs;
|
adamstark@55
|
61 double frameNum = (double) frameNumber;
|
adamstark@55
|
62
|
adamstark@55
|
63 return ((hop / samplingFrequency) * frameNum);
|
adamstark@55
|
64 }
|
adamstark@55
|
65
|
adamstark@55
|
66 //=======================================================================
|
adamstark@55
|
67 double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
|
adamstark@55
|
68 {
|
adamstark@55
|
69 long frameNum = (long) frameNumber;
|
adamstark@55
|
70
|
adamstark@55
|
71 return getBeatTimeInSeconds(frameNum, hopSize, fs);
|
adamstark@55
|
72 }
|
adamstark@55
|
73
|
adamstark@55
|
74
|
adamstark@55
|
75
|
adamstark@55
|
76 //=======================================================================
|
adamstark@57
|
77 void BTrack::initialise(int hopSize_, int frameSize_)
|
adamstark@55
|
78 {
|
adamstark@55
|
79 double rayparam = 43;
|
adamstark@54
|
80 double pi = 3.14159265;
|
adamstark@46
|
81
|
adamstark@46
|
82
|
adamstark@46
|
83 // initialise parameters
|
adamstark@46
|
84 tightness = 5;
|
adamstark@46
|
85 alpha = 0.9;
|
adamstark@46
|
86 tempo = 120;
|
adamstark@58
|
87 estimatedTempo = 120.0;
|
adamstark@59
|
88 tempoToLagFactor = 60.*44100./512.;
|
adamstark@46
|
89
|
adamstark@46
|
90 m0 = 10;
|
adamstark@58
|
91 beatCounter = -1;
|
adamstark@46
|
92
|
adamstark@57
|
93 beatDueInFrame = false;
|
adamstark@46
|
94
|
adamstark@58
|
95
|
adamstark@46
|
96 // create rayleigh weighting vector
|
adamstark@46
|
97 for (int n = 0;n < 128;n++)
|
adamstark@46
|
98 {
|
adamstark@58
|
99 weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
|
adamstark@46
|
100 }
|
adamstark@46
|
101
|
adamstark@46
|
102 // initialise prev_delta
|
adamstark@46
|
103 for (int i = 0;i < 41;i++)
|
adamstark@46
|
104 {
|
adamstark@58
|
105 prevDelta[i] = 1;
|
adamstark@46
|
106 }
|
adamstark@46
|
107
|
adamstark@54
|
108 double t_mu = 41/2;
|
adamstark@54
|
109 double m_sig;
|
adamstark@54
|
110 double x;
|
adamstark@46
|
111 // create tempo transition matrix
|
adamstark@46
|
112 m_sig = 41/8;
|
adamstark@46
|
113 for (int i = 0;i < 41;i++)
|
adamstark@46
|
114 {
|
adamstark@46
|
115 for (int j = 0;j < 41;j++)
|
adamstark@46
|
116 {
|
adamstark@46
|
117 x = j+1;
|
adamstark@46
|
118 t_mu = i+1;
|
adamstark@58
|
119 tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
|
adamstark@46
|
120 }
|
adamstark@55
|
121 }
|
adamstark@46
|
122
|
adamstark@46
|
123 // tempo is not fixed
|
adamstark@58
|
124 tempoFixed = false;
|
adamstark@58
|
125
|
adamstark@58
|
126 // initialise latest cumulative score value
|
adamstark@58
|
127 // in case it is requested before any processing takes place
|
adamstark@58
|
128 latestCumulativeScoreValue = 0;
|
adamstark@55
|
129
|
adamstark@55
|
130 // initialise algorithm given the hopsize
|
adamstark@57
|
131 setHopSize(hopSize_);
|
adamstark@88
|
132
|
adamstark@88
|
133
|
adamstark@88
|
134 // Set up FFT for calculating the auto-correlation function
|
adamstark@88
|
135 FFTLengthForACFCalculation = 1024;
|
adamstark@88
|
136
|
adamstark@88
|
137 complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@88
|
138 complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@88
|
139
|
adamstark@88
|
140 acfForwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@88
|
141 acfBackwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@46
|
142 }
|
adamstark@46
|
143
|
adamstark@51
|
144 //=======================================================================
|
adamstark@57
|
145 void BTrack::setHopSize(int hopSize_)
|
adamstark@46
|
146 {
|
adamstark@57
|
147 hopSize = hopSize_;
|
adamstark@58
|
148 onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size
|
adamstark@46
|
149
|
adamstark@57
|
150 beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
|
adamstark@63
|
151
|
adamstark@63
|
152 // set size of onset detection function buffer
|
adamstark@63
|
153 onsetDF.resize(onsetDFBufferSize);
|
adamstark@63
|
154
|
adamstark@63
|
155 // set size of cumulative score buffer
|
adamstark@63
|
156 cumulativeScore.resize(onsetDFBufferSize);
|
adamstark@46
|
157
|
adamstark@46
|
158 // initialise df_buffer to zeros
|
adamstark@58
|
159 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@46
|
160 {
|
adamstark@58
|
161 onsetDF[i] = 0;
|
adamstark@58
|
162 cumulativeScore[i] = 0;
|
adamstark@46
|
163
|
adamstark@46
|
164
|
adamstark@57
|
165 if ((i % ((int) round(beatPeriod))) == 0)
|
adamstark@46
|
166 {
|
adamstark@58
|
167 onsetDF[i] = 1;
|
adamstark@46
|
168 }
|
adamstark@46
|
169 }
|
adamstark@46
|
170 }
|
adamstark@46
|
171
|
adamstark@51
|
172 //=======================================================================
|
adamstark@65
|
173 void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_)
|
adamstark@65
|
174 {
|
adamstark@65
|
175 // update the onset detection function object
|
adamstark@66
|
176 odf.initialise(hopSize_, frameSize_);
|
adamstark@65
|
177
|
adamstark@65
|
178 // update the hop size being used by the beat tracker
|
adamstark@65
|
179 setHopSize(hopSize_);
|
adamstark@65
|
180 }
|
adamstark@65
|
181
|
adamstark@65
|
182 //=======================================================================
|
adamstark@57
|
183 bool BTrack::beatDueInCurrentFrame()
|
adamstark@57
|
184 {
|
adamstark@57
|
185 return beatDueInFrame;
|
adamstark@57
|
186 }
|
adamstark@57
|
187
|
adamstark@57
|
188 //=======================================================================
|
adamstark@78
|
189 double BTrack::getCurrentTempoEstimate()
|
adamstark@78
|
190 {
|
adamstark@78
|
191 return estimatedTempo;
|
adamstark@78
|
192 }
|
adamstark@78
|
193
|
adamstark@78
|
194 //=======================================================================
|
adamstark@57
|
195 int BTrack::getHopSize()
|
adamstark@57
|
196 {
|
adamstark@57
|
197 return hopSize;
|
adamstark@57
|
198 }
|
adamstark@57
|
199
|
adamstark@57
|
200 //=======================================================================
|
adamstark@58
|
201 double BTrack::getLatestCumulativeScoreValue()
|
adamstark@58
|
202 {
|
adamstark@58
|
203 return latestCumulativeScoreValue;
|
adamstark@58
|
204 }
|
adamstark@58
|
205
|
adamstark@58
|
206 //=======================================================================
|
adamstark@55
|
207 void BTrack::processAudioFrame(double *frame)
|
adamstark@55
|
208 {
|
adamstark@55
|
209 // calculate the onset detection function sample for the frame
|
adamstark@59
|
210 double sample = odf.calculateOnsetDetectionFunctionSample(frame);
|
adamstark@55
|
211
|
adamstark@56
|
212
|
adamstark@55
|
213
|
adamstark@55
|
214 // process the new onset detection function sample in the beat tracking algorithm
|
adamstark@55
|
215 processOnsetDetectionFunctionSample(sample);
|
adamstark@55
|
216 }
|
adamstark@55
|
217
|
adamstark@55
|
218 //=======================================================================
|
adamstark@55
|
219 void BTrack::processOnsetDetectionFunctionSample(double newSample)
|
adamstark@56
|
220 {
|
adamstark@56
|
221 // we need to ensure that the onset
|
adamstark@56
|
222 // detection function sample is positive
|
adamstark@56
|
223 newSample = fabs(newSample);
|
adamstark@56
|
224
|
adamstark@56
|
225 // add a tiny constant to the sample to stop it from ever going
|
adamstark@56
|
226 // to zero. this is to avoid problems further down the line
|
adamstark@56
|
227 newSample = newSample + 0.0001;
|
adamstark@56
|
228
|
adamstark@46
|
229 m0--;
|
adamstark@58
|
230 beatCounter--;
|
adamstark@57
|
231 beatDueInFrame = false;
|
adamstark@46
|
232
|
adamstark@89
|
233 // // move all samples back one step
|
adamstark@89
|
234 // for (int i=0;i < (onsetDFBufferSize-1);i++)
|
adamstark@89
|
235 // {
|
adamstark@89
|
236 // onsetDF[i] = onsetDF[i+1];
|
adamstark@89
|
237 // }
|
adamstark@46
|
238
|
adamstark@46
|
239 // add new sample at the end
|
adamstark@89
|
240 //onsetDF[onsetDFBufferSize-1] = newSample;
|
adamstark@89
|
241 onsetDF.addSampleToEnd(newSample);
|
adamstark@46
|
242
|
adamstark@46
|
243 // update cumulative score
|
adamstark@57
|
244 updateCumulativeScore(newSample);
|
adamstark@46
|
245
|
adamstark@46
|
246 // if we are halfway between beats
|
adamstark@46
|
247 if (m0 == 0)
|
adamstark@46
|
248 {
|
adamstark@57
|
249 predictBeat();
|
adamstark@46
|
250 }
|
adamstark@46
|
251
|
adamstark@46
|
252 // if we are at a beat
|
adamstark@58
|
253 if (beatCounter == 0)
|
adamstark@46
|
254 {
|
adamstark@57
|
255 beatDueInFrame = true; // indicate a beat should be output
|
adamstark@46
|
256
|
adamstark@46
|
257 // recalculate the tempo
|
adamstark@57
|
258 resampleOnsetDetectionFunction();
|
adamstark@57
|
259 calculateTempo();
|
adamstark@46
|
260 }
|
adamstark@46
|
261 }
|
adamstark@46
|
262
|
adamstark@51
|
263 //=======================================================================
|
adamstark@57
|
264 void BTrack::setTempo(double tempo)
|
adamstark@46
|
265 {
|
adamstark@46
|
266
|
adamstark@46
|
267 /////////// TEMPO INDICATION RESET //////////////////
|
adamstark@46
|
268
|
adamstark@46
|
269 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
270 while (tempo > 160)
|
adamstark@46
|
271 {
|
adamstark@46
|
272 tempo = tempo/2;
|
adamstark@46
|
273 }
|
adamstark@46
|
274
|
adamstark@46
|
275 while (tempo < 80)
|
adamstark@46
|
276 {
|
adamstark@46
|
277 tempo = tempo * 2;
|
adamstark@46
|
278 }
|
adamstark@46
|
279
|
adamstark@46
|
280 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@46
|
281 int tempo_index = (int) round((tempo - 80)/2);
|
adamstark@46
|
282
|
adamstark@46
|
283 // now set previous tempo observations to zero
|
adamstark@46
|
284 for (int i=0;i < 41;i++)
|
adamstark@46
|
285 {
|
adamstark@58
|
286 prevDelta[i] = 0;
|
adamstark@46
|
287 }
|
adamstark@46
|
288
|
adamstark@46
|
289 // set desired tempo index to 1
|
adamstark@58
|
290 prevDelta[tempo_index] = 1;
|
adamstark@46
|
291
|
adamstark@46
|
292
|
adamstark@46
|
293 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
|
adamstark@46
|
294
|
adamstark@46
|
295 // calculate new beat period
|
adamstark@57
|
296 int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo));
|
adamstark@46
|
297
|
adamstark@46
|
298 int bcounter = 1;
|
adamstark@46
|
299 // initialise df_buffer to zeros
|
adamstark@58
|
300 for (int i = (onsetDFBufferSize-1);i >= 0;i--)
|
adamstark@46
|
301 {
|
adamstark@46
|
302 if (bcounter == 1)
|
adamstark@46
|
303 {
|
adamstark@58
|
304 cumulativeScore[i] = 150;
|
adamstark@58
|
305 onsetDF[i] = 150;
|
adamstark@46
|
306 }
|
adamstark@46
|
307 else
|
adamstark@46
|
308 {
|
adamstark@58
|
309 cumulativeScore[i] = 10;
|
adamstark@58
|
310 onsetDF[i] = 10;
|
adamstark@46
|
311 }
|
adamstark@46
|
312
|
adamstark@46
|
313 bcounter++;
|
adamstark@46
|
314
|
adamstark@46
|
315 if (bcounter > new_bperiod)
|
adamstark@46
|
316 {
|
adamstark@46
|
317 bcounter = 1;
|
adamstark@46
|
318 }
|
adamstark@46
|
319 }
|
adamstark@46
|
320
|
adamstark@46
|
321 /////////// INDICATE THAT THIS IS A BEAT //////////////////
|
adamstark@46
|
322
|
adamstark@46
|
323 // beat is now
|
adamstark@58
|
324 beatCounter = 0;
|
adamstark@46
|
325
|
adamstark@46
|
326 // offbeat is half of new beat period away
|
adamstark@54
|
327 m0 = (int) round(((double) new_bperiod)/2);
|
adamstark@46
|
328 }
|
adamstark@46
|
329
|
adamstark@51
|
330 //=======================================================================
|
adamstark@57
|
331 void BTrack::fixTempo(double tempo)
|
adamstark@46
|
332 {
|
adamstark@46
|
333 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
334 while (tempo > 160)
|
adamstark@46
|
335 {
|
adamstark@46
|
336 tempo = tempo/2;
|
adamstark@46
|
337 }
|
adamstark@46
|
338
|
adamstark@46
|
339 while (tempo < 80)
|
adamstark@46
|
340 {
|
adamstark@46
|
341 tempo = tempo * 2;
|
adamstark@46
|
342 }
|
adamstark@46
|
343
|
adamstark@46
|
344 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@46
|
345 int tempo_index = (int) round((tempo - 80)/2);
|
adamstark@46
|
346
|
adamstark@46
|
347 // now set previous fixed previous tempo observation values to zero
|
adamstark@46
|
348 for (int i=0;i < 41;i++)
|
adamstark@46
|
349 {
|
adamstark@58
|
350 prevDeltaFixed[i] = 0;
|
adamstark@46
|
351 }
|
adamstark@46
|
352
|
adamstark@46
|
353 // set desired tempo index to 1
|
adamstark@58
|
354 prevDeltaFixed[tempo_index] = 1;
|
adamstark@46
|
355
|
adamstark@46
|
356 // set the tempo fix flag
|
adamstark@58
|
357 tempoFixed = true;
|
adamstark@46
|
358 }
|
adamstark@46
|
359
|
adamstark@51
|
360 //=======================================================================
|
adamstark@57
|
361 void BTrack::doNotFixTempo()
|
adamstark@46
|
362 {
|
adamstark@46
|
363 // set the tempo fix flag
|
adamstark@58
|
364 tempoFixed = false;
|
adamstark@46
|
365 }
|
adamstark@46
|
366
|
adamstark@51
|
367 //=======================================================================
|
adamstark@57
|
368 void BTrack::resampleOnsetDetectionFunction()
|
adamstark@46
|
369 {
|
adamstark@46
|
370 float output[512];
|
adamstark@89
|
371
|
adamstark@89
|
372
|
adamstark@58
|
373 float input[onsetDFBufferSize];
|
adamstark@54
|
374
|
adamstark@58
|
375 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@54
|
376 {
|
adamstark@58
|
377 input[i] = (float) onsetDF[i];
|
adamstark@54
|
378 }
|
adamstark@89
|
379
|
adamstark@89
|
380 double src_ratio = 512.0/((double) onsetDFBufferSize);
|
adamstark@89
|
381 int BUFFER_LEN = onsetDFBufferSize;
|
adamstark@89
|
382 int output_len;
|
adamstark@89
|
383 SRC_DATA src_data ;
|
adamstark@89
|
384
|
adamstark@89
|
385 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
|
adamstark@89
|
386 output_len = 512;
|
adamstark@89
|
387
|
adamstark@89
|
388 src_data.data_in = input;
|
adamstark@89
|
389 src_data.input_frames = BUFFER_LEN;
|
adamstark@89
|
390
|
adamstark@89
|
391 src_data.src_ratio = src_ratio;
|
adamstark@89
|
392
|
adamstark@89
|
393 src_data.data_out = output;
|
adamstark@89
|
394 src_data.output_frames = output_len;
|
adamstark@89
|
395
|
adamstark@89
|
396 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
|
adamstark@89
|
397
|
adamstark@89
|
398 for (int i = 0;i < output_len;i++)
|
adamstark@89
|
399 {
|
adamstark@89
|
400 resampledOnsetDF[i] = (double) src_data.data_out[i];
|
adamstark@89
|
401 }
|
adamstark@46
|
402 }
|
adamstark@46
|
403
|
adamstark@51
|
404 //=======================================================================
|
adamstark@57
|
405 void BTrack::calculateTempo()
|
adamstark@46
|
406 {
|
adamstark@46
|
407 // adaptive threshold on input
|
adamstark@58
|
408 adaptiveThreshold(resampledOnsetDF,512);
|
adamstark@46
|
409
|
adamstark@46
|
410 // calculate auto-correlation function of detection function
|
adamstark@58
|
411 calculateBalancedACF(resampledOnsetDF);
|
adamstark@46
|
412
|
adamstark@46
|
413 // calculate output of comb filterbank
|
adamstark@57
|
414 calculateOutputOfCombFilterBank();
|
adamstark@46
|
415
|
adamstark@46
|
416
|
adamstark@46
|
417 // adaptive threshold on rcf
|
adamstark@58
|
418 adaptiveThreshold(combFilterBankOutput,128);
|
adamstark@46
|
419
|
adamstark@46
|
420
|
adamstark@46
|
421 int t_index;
|
adamstark@46
|
422 int t_index2;
|
adamstark@59
|
423 // calculate tempo observation vector from beat period observation vector
|
adamstark@46
|
424 for (int i = 0;i < 41;i++)
|
adamstark@46
|
425 {
|
adamstark@59
|
426 t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80)));
|
adamstark@59
|
427 t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160)));
|
adamstark@46
|
428
|
adamstark@46
|
429
|
adamstark@58
|
430 tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1];
|
adamstark@46
|
431 }
|
adamstark@46
|
432
|
adamstark@46
|
433
|
adamstark@54
|
434 double maxval;
|
adamstark@54
|
435 double maxind;
|
adamstark@54
|
436 double curval;
|
adamstark@46
|
437
|
adamstark@46
|
438 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
|
adamstark@58
|
439 if (tempoFixed)
|
adamstark@46
|
440 {
|
adamstark@46
|
441 for (int k = 0;k < 41;k++)
|
adamstark@46
|
442 {
|
adamstark@58
|
443 prevDelta[k] = prevDeltaFixed[k];
|
adamstark@46
|
444 }
|
adamstark@46
|
445 }
|
adamstark@46
|
446
|
adamstark@46
|
447 for (int j=0;j < 41;j++)
|
adamstark@46
|
448 {
|
adamstark@46
|
449 maxval = -1;
|
adamstark@46
|
450 for (int i = 0;i < 41;i++)
|
adamstark@46
|
451 {
|
adamstark@58
|
452 curval = prevDelta[i]*tempoTransitionMatrix[i][j];
|
adamstark@46
|
453
|
adamstark@46
|
454 if (curval > maxval)
|
adamstark@46
|
455 {
|
adamstark@46
|
456 maxval = curval;
|
adamstark@46
|
457 }
|
adamstark@46
|
458 }
|
adamstark@46
|
459
|
adamstark@58
|
460 delta[j] = maxval*tempoObservationVector[j];
|
adamstark@46
|
461 }
|
adamstark@46
|
462
|
adamstark@46
|
463
|
adamstark@57
|
464 normaliseArray(delta,41);
|
adamstark@46
|
465
|
adamstark@46
|
466 maxind = -1;
|
adamstark@46
|
467 maxval = -1;
|
adamstark@46
|
468
|
adamstark@46
|
469 for (int j=0;j < 41;j++)
|
adamstark@46
|
470 {
|
adamstark@46
|
471 if (delta[j] > maxval)
|
adamstark@46
|
472 {
|
adamstark@46
|
473 maxval = delta[j];
|
adamstark@46
|
474 maxind = j;
|
adamstark@46
|
475 }
|
adamstark@46
|
476
|
adamstark@58
|
477 prevDelta[j] = delta[j];
|
adamstark@46
|
478 }
|
adamstark@46
|
479
|
adamstark@57
|
480 beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
|
adamstark@46
|
481
|
adamstark@57
|
482 if (beatPeriod > 0)
|
adamstark@46
|
483 {
|
adamstark@58
|
484 estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod);
|
adamstark@46
|
485 }
|
adamstark@46
|
486 }
|
adamstark@46
|
487
|
adamstark@51
|
488 //=======================================================================
|
adamstark@57
|
489 void BTrack::adaptiveThreshold(double *x,int N)
|
adamstark@46
|
490 {
|
adamstark@46
|
491 int i = 0;
|
adamstark@46
|
492 int k,t = 0;
|
adamstark@54
|
493 double x_thresh[N];
|
adamstark@46
|
494
|
adamstark@46
|
495 int p_post = 7;
|
adamstark@46
|
496 int p_pre = 8;
|
adamstark@46
|
497
|
adamstark@52
|
498 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
|
adamstark@46
|
499
|
adamstark@46
|
500 // find threshold for first 't' samples, where a full average cannot be computed yet
|
adamstark@46
|
501 for (i = 0;i <= t;i++)
|
adamstark@46
|
502 {
|
adamstark@52
|
503 k = std::min((i+p_pre),N);
|
adamstark@57
|
504 x_thresh[i] = calculateMeanOfArray(x,1,k);
|
adamstark@46
|
505 }
|
adamstark@46
|
506 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
|
adamstark@46
|
507 for (i = t+1;i < N-p_post;i++)
|
adamstark@46
|
508 {
|
adamstark@57
|
509 x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post);
|
adamstark@46
|
510 }
|
adamstark@46
|
511 // for last few samples calculate threshold, again, not enough samples to do as above
|
adamstark@46
|
512 for (i = N-p_post;i < N;i++)
|
adamstark@46
|
513 {
|
adamstark@52
|
514 k = std::max((i-p_post),1);
|
adamstark@57
|
515 x_thresh[i] = calculateMeanOfArray(x,k,N);
|
adamstark@46
|
516 }
|
adamstark@46
|
517
|
adamstark@46
|
518 // subtract the threshold from the detection function and check that it is not less than 0
|
adamstark@46
|
519 for (i = 0;i < N;i++)
|
adamstark@46
|
520 {
|
adamstark@46
|
521 x[i] = x[i] - x_thresh[i];
|
adamstark@46
|
522 if (x[i] < 0)
|
adamstark@46
|
523 {
|
adamstark@46
|
524 x[i] = 0;
|
adamstark@46
|
525 }
|
adamstark@46
|
526 }
|
adamstark@46
|
527 }
|
adamstark@46
|
528
|
adamstark@51
|
529 //=======================================================================
|
adamstark@57
|
530 void BTrack::calculateOutputOfCombFilterBank()
|
adamstark@46
|
531 {
|
adamstark@46
|
532 int numelem;
|
adamstark@46
|
533
|
adamstark@46
|
534 for (int i = 0;i < 128;i++)
|
adamstark@46
|
535 {
|
adamstark@58
|
536 combFilterBankOutput[i] = 0;
|
adamstark@46
|
537 }
|
adamstark@46
|
538
|
adamstark@46
|
539 numelem = 4;
|
adamstark@46
|
540
|
adamstark@46
|
541 for (int i = 2;i <= 127;i++) // max beat period
|
adamstark@46
|
542 {
|
adamstark@46
|
543 for (int a = 1;a <= numelem;a++) // number of comb elements
|
adamstark@46
|
544 {
|
adamstark@46
|
545 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
|
adamstark@46
|
546 {
|
adamstark@58
|
547 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
|
adamstark@46
|
548 }
|
adamstark@46
|
549 }
|
adamstark@46
|
550 }
|
adamstark@46
|
551 }
|
adamstark@46
|
552
|
adamstark@51
|
553 //=======================================================================
|
adamstark@60
|
554 void BTrack::calculateBalancedACF(double *onsetDetectionFunction)
|
adamstark@46
|
555 {
|
adamstark@88
|
556 int onsetDetectionFunctionLength = 512;
|
adamstark@88
|
557
|
adamstark@88
|
558 // copy into complex array and zero pad
|
adamstark@88
|
559 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
560 {
|
adamstark@88
|
561 if (i < onsetDetectionFunctionLength)
|
adamstark@88
|
562 {
|
adamstark@88
|
563 complexIn[i][0] = onsetDetectionFunction[i];
|
adamstark@88
|
564 complexIn[i][1] = 0.0;
|
adamstark@88
|
565 }
|
adamstark@88
|
566 else
|
adamstark@88
|
567 {
|
adamstark@88
|
568 complexIn[i][0] = 0.0;
|
adamstark@88
|
569 complexIn[i][1] = 0.0;
|
adamstark@88
|
570 }
|
adamstark@88
|
571 }
|
adamstark@88
|
572
|
adamstark@88
|
573 // perform the fft
|
adamstark@88
|
574 fftw_execute(acfForwardFFT);
|
adamstark@88
|
575
|
adamstark@88
|
576 // multiply by complex conjugate
|
adamstark@88
|
577 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
578 {
|
adamstark@88
|
579 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
|
adamstark@88
|
580 complexOut[i][1] = 0.0;
|
adamstark@88
|
581 }
|
adamstark@88
|
582
|
adamstark@88
|
583 // perform the ifft
|
adamstark@88
|
584 fftw_execute(acfBackwardFFT);
|
adamstark@88
|
585
|
adamstark@88
|
586
|
adamstark@88
|
587 double lag = 512;
|
adamstark@88
|
588
|
adamstark@88
|
589 for (int i = 0;i < 512;i++)
|
adamstark@88
|
590 {
|
adamstark@88
|
591 // calculate absolute value of result
|
adamstark@88
|
592 double absValue = sqrt(complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
|
adamstark@88
|
593
|
adamstark@88
|
594 // divide by inverse lad to deal with scale bias towards small lags
|
adamstark@88
|
595 acf[i] = absValue / lag;
|
adamstark@88
|
596
|
adamstark@88
|
597 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
|
adamstark@88
|
598 // exactly the same ACF output as the old time domain implementation. The time difference is
|
adamstark@88
|
599 // minimal so I decided to keep it
|
adamstark@88
|
600 acf[i] = acf[i] / 1024.;
|
adamstark@88
|
601
|
adamstark@88
|
602 lag = lag - 1.;
|
adamstark@88
|
603 }
|
adamstark@46
|
604 }
|
adamstark@46
|
605
|
adamstark@51
|
606 //=======================================================================
|
adamstark@59
|
607 double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex)
|
adamstark@46
|
608 {
|
adamstark@46
|
609 int i;
|
adamstark@47
|
610 double sum = 0;
|
adamstark@47
|
611
|
adamstark@59
|
612 int length = endIndex - startIndex;
|
adamstark@46
|
613
|
adamstark@46
|
614 // find sum
|
adamstark@59
|
615 for (i = startIndex;i < endIndex;i++)
|
adamstark@46
|
616 {
|
adamstark@46
|
617 sum = sum + array[i];
|
adamstark@46
|
618 }
|
adamstark@46
|
619
|
adamstark@47
|
620 if (length > 0)
|
adamstark@47
|
621 {
|
adamstark@47
|
622 return sum / length; // average and return
|
adamstark@47
|
623 }
|
adamstark@47
|
624 else
|
adamstark@47
|
625 {
|
adamstark@47
|
626 return 0;
|
adamstark@47
|
627 }
|
adamstark@46
|
628 }
|
adamstark@46
|
629
|
adamstark@51
|
630 //=======================================================================
|
adamstark@57
|
631 void BTrack::normaliseArray(double *array,int N)
|
adamstark@46
|
632 {
|
adamstark@46
|
633 double sum = 0;
|
adamstark@46
|
634
|
adamstark@46
|
635 for (int i = 0;i < N;i++)
|
adamstark@46
|
636 {
|
adamstark@46
|
637 if (array[i] > 0)
|
adamstark@46
|
638 {
|
adamstark@46
|
639 sum = sum + array[i];
|
adamstark@46
|
640 }
|
adamstark@46
|
641 }
|
adamstark@46
|
642
|
adamstark@46
|
643 if (sum > 0)
|
adamstark@46
|
644 {
|
adamstark@46
|
645 for (int i = 0;i < N;i++)
|
adamstark@46
|
646 {
|
adamstark@46
|
647 array[i] = array[i] / sum;
|
adamstark@46
|
648 }
|
adamstark@46
|
649 }
|
adamstark@46
|
650 }
|
adamstark@46
|
651
|
adamstark@51
|
652 //=======================================================================
|
adamstark@59
|
653 void BTrack::updateCumulativeScore(double odfSample)
|
adamstark@46
|
654 {
|
adamstark@46
|
655 int start, end, winsize;
|
adamstark@54
|
656 double max;
|
adamstark@46
|
657
|
adamstark@58
|
658 start = onsetDFBufferSize - round(2*beatPeriod);
|
adamstark@58
|
659 end = onsetDFBufferSize - round(beatPeriod/2);
|
adamstark@46
|
660 winsize = end-start+1;
|
adamstark@46
|
661
|
adamstark@54
|
662 double w1[winsize];
|
adamstark@57
|
663 double v = -2*beatPeriod;
|
adamstark@54
|
664 double wcumscore;
|
adamstark@46
|
665
|
adamstark@46
|
666
|
adamstark@46
|
667 // create window
|
adamstark@46
|
668 for (int i = 0;i < winsize;i++)
|
adamstark@46
|
669 {
|
adamstark@57
|
670 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
|
adamstark@46
|
671 v = v+1;
|
adamstark@46
|
672 }
|
adamstark@46
|
673
|
adamstark@46
|
674 // calculate new cumulative score value
|
adamstark@46
|
675 max = 0;
|
adamstark@46
|
676 int n = 0;
|
adamstark@46
|
677 for (int i=start;i <= end;i++)
|
adamstark@46
|
678 {
|
adamstark@58
|
679 wcumscore = cumulativeScore[i]*w1[n];
|
adamstark@46
|
680
|
adamstark@46
|
681 if (wcumscore > max)
|
adamstark@46
|
682 {
|
adamstark@46
|
683 max = wcumscore;
|
adamstark@46
|
684 }
|
adamstark@46
|
685 n++;
|
adamstark@46
|
686 }
|
adamstark@46
|
687
|
adamstark@46
|
688
|
adamstark@89
|
689 // // shift cumulative score back one
|
adamstark@89
|
690 // for (int i = 0;i < (onsetDFBufferSize-1);i++)
|
adamstark@89
|
691 // {
|
adamstark@89
|
692 // cumulativeScore[i] = cumulativeScore[i+1];
|
adamstark@89
|
693 // }
|
adamstark@46
|
694
|
adamstark@89
|
695 latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max);
|
adamstark@89
|
696
|
adamstark@89
|
697 cumulativeScore.addSampleToEnd(latestCumulativeScoreValue);
|
adamstark@89
|
698
|
adamstark@46
|
699 // add new value to cumulative score
|
adamstark@89
|
700 //cumulativeScore[onsetDFBufferSize-1] = ((1-alpha)*odfSample) + (alpha*max);
|
adamstark@46
|
701
|
adamstark@89
|
702 //latestCumulativeScoreValue = cumulativeScore[onsetDFBufferSize-1];
|
adamstark@58
|
703
|
adamstark@46
|
704 }
|
adamstark@46
|
705
|
adamstark@51
|
706 //=======================================================================
|
adamstark@57
|
707 void BTrack::predictBeat()
|
adamstark@46
|
708 {
|
adamstark@58
|
709 int windowSize = (int) beatPeriod;
|
adamstark@58
|
710 double futureCumulativeScore[onsetDFBufferSize + windowSize];
|
adamstark@58
|
711 double w2[windowSize];
|
adamstark@46
|
712 // copy cumscore to first part of fcumscore
|
adamstark@58
|
713 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@46
|
714 {
|
adamstark@58
|
715 futureCumulativeScore[i] = cumulativeScore[i];
|
adamstark@46
|
716 }
|
adamstark@46
|
717
|
adamstark@46
|
718 // create future window
|
adamstark@54
|
719 double v = 1;
|
adamstark@58
|
720 for (int i = 0;i < windowSize;i++)
|
adamstark@46
|
721 {
|
adamstark@57
|
722 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
|
adamstark@46
|
723 v++;
|
adamstark@46
|
724 }
|
adamstark@46
|
725
|
adamstark@46
|
726 // create past window
|
adamstark@57
|
727 v = -2*beatPeriod;
|
adamstark@58
|
728 int start = onsetDFBufferSize - round(2*beatPeriod);
|
adamstark@58
|
729 int end = onsetDFBufferSize - round(beatPeriod/2);
|
adamstark@46
|
730 int pastwinsize = end-start+1;
|
adamstark@54
|
731 double w1[pastwinsize];
|
adamstark@46
|
732
|
adamstark@46
|
733 for (int i = 0;i < pastwinsize;i++)
|
adamstark@46
|
734 {
|
adamstark@57
|
735 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
|
adamstark@46
|
736 v = v+1;
|
adamstark@46
|
737 }
|
adamstark@46
|
738
|
adamstark@46
|
739
|
adamstark@46
|
740
|
adamstark@46
|
741 // calculate future cumulative score
|
adamstark@54
|
742 double max;
|
adamstark@46
|
743 int n;
|
adamstark@54
|
744 double wcumscore;
|
adamstark@58
|
745 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
|
adamstark@46
|
746 {
|
adamstark@57
|
747 start = i - round(2*beatPeriod);
|
adamstark@57
|
748 end = i - round(beatPeriod/2);
|
adamstark@46
|
749
|
adamstark@46
|
750 max = 0;
|
adamstark@46
|
751 n = 0;
|
adamstark@46
|
752 for (int k=start;k <= end;k++)
|
adamstark@46
|
753 {
|
adamstark@58
|
754 wcumscore = futureCumulativeScore[k]*w1[n];
|
adamstark@46
|
755
|
adamstark@46
|
756 if (wcumscore > max)
|
adamstark@46
|
757 {
|
adamstark@46
|
758 max = wcumscore;
|
adamstark@46
|
759 }
|
adamstark@46
|
760 n++;
|
adamstark@46
|
761 }
|
adamstark@46
|
762
|
adamstark@58
|
763 futureCumulativeScore[i] = max;
|
adamstark@46
|
764 }
|
adamstark@46
|
765
|
adamstark@46
|
766
|
adamstark@46
|
767 // predict beat
|
adamstark@46
|
768 max = 0;
|
adamstark@46
|
769 n = 0;
|
adamstark@46
|
770
|
adamstark@58
|
771 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
|
adamstark@46
|
772 {
|
adamstark@58
|
773 wcumscore = futureCumulativeScore[i]*w2[n];
|
adamstark@46
|
774
|
adamstark@46
|
775 if (wcumscore > max)
|
adamstark@46
|
776 {
|
adamstark@46
|
777 max = wcumscore;
|
adamstark@58
|
778 beatCounter = n;
|
adamstark@46
|
779 }
|
adamstark@46
|
780
|
adamstark@46
|
781 n++;
|
adamstark@46
|
782 }
|
adamstark@46
|
783
|
adamstark@46
|
784 // set next prediction time
|
adamstark@58
|
785 m0 = beatCounter+round(beatPeriod/2);
|
adamstark@46
|
786
|
adamstark@46
|
787
|
adamstark@46
|
788 } |