Mercurial > hg > beatroot-vamp
view Induction.cpp @ 37:1f175ae200a6 tip
Update RDF
author | Chris Cannam |
---|---|
date | Wed, 25 Jun 2014 13:48:49 +0100 |
parents | 633ec097fa56 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp feature extraction plugin for the BeatRoot beat tracker. Centre for Digital Music, Queen Mary, University of London. This file copyright 2011 Simon Dixon, Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Induction.h" double Induction::clusterWidth = 0.025; double Induction::minIOI = 0.070; double Induction::maxIOI = 2.500; double Induction::minIBI = 0.3; double Induction::maxIBI = 1.0; int Induction::topN = 10; AgentList Induction::beatInduction(AgentParameters params, EventList events) { int i, j, b, bestCount; bool submult; int intervals = 0; // number of interval clusters vector<int> bestn;// count of high-scoring clusters bestn.resize(topN); double ratio, err; int degree; int maxClusterCount = (int) ceil((maxIOI - minIOI) / clusterWidth); vector<double> clusterMean; clusterMean.resize(maxClusterCount); vector<int> clusterSize; clusterSize.resize(maxClusterCount); vector<int> clusterScore; clusterScore.resize(maxClusterCount); EventList::iterator ptr1, ptr2; Event e1, e2; ptr1 = events.begin(); while (ptr1 != events.end()) { e1 = *ptr1; ++ptr1; ptr2 = events.begin(); e2 = *ptr2; ++ptr2; while (e2 != e1 && ptr2 != events.end()) { e2 = *ptr2; ++ptr2; } while (ptr2 != events.end()) { e2 = *ptr2; ++ptr2; double ioi = e2.time - e1.time; if (ioi < minIOI) // skip short intervals continue; if (ioi > maxIOI) // ioi too long break; for (b = 0; b < intervals; b++) // assign to nearest cluster if (fabs(clusterMean[b] - ioi) < clusterWidth) { if ((b < intervals - 1) && ( fabs(clusterMean[b+1] - ioi) < fabs(clusterMean[b] - ioi))) b++; // next cluster is closer clusterMean[b] = (clusterMean[b] * clusterSize[b] +ioi)/ (clusterSize[b] + 1); clusterSize[b]++; break; } if (b == intervals) { // no suitable cluster; create new one if (intervals == maxClusterCount) { // System.err.println("Warning: Too many clusters"); continue; // ignore this IOI } intervals++; for ( ; (b>0) && (clusterMean[b-1] > ioi); b--) { clusterMean[b] = clusterMean[b-1]; clusterSize[b] = clusterSize[b-1]; } clusterMean[b] = ioi; clusterSize[b] = 1; } } } for (b = 0; b < intervals; b++) // merge similar intervals // TODO: they are now in order, so don't need the 2nd loop // TODO: check BOTH sides before averaging or upper gps don't work for (i = b+1; i < intervals; i++) if (fabs(clusterMean[b] - clusterMean[i]) < clusterWidth) { clusterMean[b] = (clusterMean[b] * clusterSize[b] + clusterMean[i] * clusterSize[i]) / (clusterSize[b] + clusterSize[i]); clusterSize[b] = clusterSize[b] + clusterSize[i]; --intervals; for (j = i+1; j <= intervals; j++) { clusterMean[j-1] = clusterMean[j]; clusterSize[j-1] = clusterSize[j]; } } if (intervals == 0) return AgentList(); for (b = 0; b < intervals; b++) clusterScore[b] = 10 * clusterSize[b]; bestn[0] = 0; bestCount = 1; for (b = 0; b < intervals; b++) for (i = 0; i <= bestCount; i++) if ((i < topN) && ((i == bestCount) || (clusterScore[b] > clusterScore[bestn[i]]))){ if (bestCount < topN) bestCount++; for (j = bestCount - 1; j > i; j--) bestn[j] = bestn[j-1]; bestn[i] = b; break; } for (b = 0; b < intervals; b++) // score intervals for (i = b+1; i < intervals; i++) { ratio = clusterMean[b] / clusterMean[i]; submult = ratio < 1; if (submult) degree = (int) nearbyint(1/ratio); else degree = (int) nearbyint(ratio); if ((degree >= 2) && (degree <= 8)) { if (submult) err = fabs(clusterMean[b]*degree - clusterMean[i]); else err = fabs(clusterMean[b] - clusterMean[i]*degree); if (err < (submult? clusterWidth : clusterWidth * degree)) { if (degree >= 5) degree = 1; else degree = 6 - degree; clusterScore[b] += degree * clusterSize[i]; clusterScore[i] += degree * clusterSize[b]; } } } AgentList a; for (int index = 0; index < bestCount; index++) { b = bestn[index]; // Adjust it, using the size of super- and sub-intervals double newSum = clusterMean[b] * clusterScore[b]; int newCount = clusterSize[b]; int newWeight = clusterScore[b]; for (i = 0; i < intervals; i++) { if (i == b) continue; ratio = clusterMean[b] / clusterMean[i]; if (ratio < 1) { degree = (int) nearbyint(1 / ratio); if ((degree >= 2) && (degree <= 8)) { err = fabs(clusterMean[b]*degree - clusterMean[i]); if (err < clusterWidth) { newSum += clusterMean[i] / degree * clusterScore[i]; newCount += clusterSize[i]; newWeight += clusterScore[i]; } } } else { degree = (int) nearbyint(ratio); if ((degree >= 2) && (degree <= 8)) { err = fabs(clusterMean[b] - degree*clusterMean[i]); if (err < clusterWidth * degree) { newSum += clusterMean[i] * degree * clusterScore[i]; newCount += clusterSize[i]; newWeight += clusterScore[i]; } } } } double beat = newSum / newWeight; // Scale within range ... hope the grouping isn't ternary :( while (beat < minIBI) // Maximum speed beat *= 2.0; while (beat > maxIBI) // Minimum speed beat /= 2.0; if (beat >= minIBI) { a.push_back(new Agent(params, beat)); } } #ifdef DEBUG_BEATROOT std::cerr << "Induction complete, returning " << a.size() << " agent(s)" << std::endl; #endif return a; } // beatInduction()