Mercurial > hg > beaglert
view projects/analogDigitalDemo/render.cpp @ 40:419ce4ebfc4c staging
Further improvements in the PRU readibility (removed unnecssary defines and renamed r27_current back to reg_digital_current)
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Wed, 13 May 2015 12:23:37 +0100 |
parents | 83baffda5786 |
children | a6d223473ea2 |
line wrap: on
line source
/* * * First assignment for ECS732 RTDSP, to implement a 2-way audio crossover * using the BeagleBone Black. * * Andrew McPherson and Victor Zappi * Queen Mary, University of London */ #include "../../include/render.h" #include <cmath> #include <rtdk.h> /* TASK: declare any global variables you need here */ // initialise_render() is called once before the audio rendering starts. // Use it to perform any initialisation and allocation which is dependent // on the period size or sample rate. // // userData holds an opaque pointer to a data structure that was passed // in from the call to initAudio(). // // Return true on success; returning false halts the program. int gNumDigitalFrames=0; bool initialise_render(int numAnalogChannels, int numDigitalChannels, int numAudioChannels, int numAnalogFramesPerPeriod, int numAudioFramesPerPeriod, float analogSampleRate, float audioSampleRate, void *userData, RTAudioSettings* settings) { gNumAnalogChannels=numAnalogChannels; gNumDigitalChannels=numDigitalChannels; return true; } // render() is called regularly at the highest priority by the audio engine. // Input and output are given from the audio hardware and the other // ADCs and DACs (if available). If only audio is available, numAnalogFrames // will be 0. long int gCountFrames=0; void render(int numAnalogFrames, int numDigitalFrames, int numAudioFrames, float *audioIn, float *audioOut, float *analogIn, float *analogOut, uint32_t *digital) /* we assume that gNumAnalogChannels=8, numAnalogFrames==8 and numDigitalFrames==numAudioFrames * */ { if((gCountFrames&31)==0){ //every 32 frames... //ANALOG channels analogWrite(0, 0, analogRead(0,0)); // read the input0 at frame0 and write it to output0 frame0. Using analogWrite will fill the rest of the buffer with the same value // The value at the last frame will persist through the successive buffers until is set again. // This effectively is a pass-through with downsampling by 32 times analogWrite(3, 0, 1.0); // write 1.0 to channel3 from frame0 to the end of the buffer analogWrite(3, 4, 0.1); // write 0.1 to channel3 from frame4 to the end of the buffer analogWriteFrame(3,6,0.2); //write 0.2 to channel3 only on frame 6 //this buffer for channel 3 will look like this: 1 1 1 1 0.1 0.1 0.2 0.1 //the next buffers for channel 3 will be filled up with 0.1 .... //DIGITAL channels digitalWrite(P8_07,0,GPIO_HIGH); //sets all the frames to HIGH for channel 0 digitalWriteFrame(P8_07,4,GPIO_LOW); //only frame 4 will be LOW for channel 0 // in this buffer the frames of channel 0 will look like this: 1 1 1 1 0 1 1 1 ...... 1 // in the next buffer each frame of channel 0 will be initialized to 1 (the last value of this buffer) digitalWrite(P8_08,0,GPIO_HIGH); digitalWrite(P8_08,2,GPIO_LOW); digitalWrite(P8_08,4,GPIO_HIGH); digitalWrite(P8_08,5,GPIO_LOW); setDigitalDirection(P9_16,0,GPIO_INPUT); // set channel 10 to input // in this buffer the frames of channel 1 will look like this: 1 1 0 0 1 0 0 0 .... 0 // in the next buffer each frame of channel 1 will be initialized to 0 (the last value of this buffer) } for(int n=0; n<numAudioFrames; n++){ for(int c=0; c<gNumAudioChannels; c++){ audioOut[n*gNumAudioChannels + c]=audioIn[n*gNumAudioChannels + c]; } //use digital channels 2-8 to create a 7 bit binary counter digital[n]=digital[n] & (~0b111111100); // set to zero (GPIO_OUTPUT) the bits in the lower word digital[n]=digital[n] & ((~0b111111100<<16) | 0xffff ); //initialize to zero the bits in the higher word (output value) digital[n]=digital[n] | ( ((gCountFrames&0b1111111)<<(16+2)) ) ; // set the bits in the higher word to the desired output value, keeping the lower word unchanged digitalWriteFrame(P8_29,n,digitalRead(P8_30,n)); // echo the input from from channel 15 to channel 14 digitalWriteFrame(P8_28,n,digitalRead(P9_16,n)); // echo the input from from channel 10 to channel 13 setDigitalDirection(P8_30,0,GPIO_INPUT); //set channel 15 to input gCountFrames++; } for(int n=0; n<numAnalogFrames; n++){ analogWriteFrame(1,n,(gCountFrames&8191)/8192.0); // writes a single frame. channel 1 is a ramp that follows gCountFrames analogWriteFrame(2,n,analogRead(2,n)); // writes a single frame. channel2 is just a passthrough // rt_printf("Analog out frame %d :",n); // for(int c=0; c<gNumAnalogChannels; c++) // rt_printf("%.1f ",analogOut[n*gNumAnalogChannels + c]); // rt_printf("\n"); } return; } // cleanup_render() is called once at the end, after the audio has stopped. // Release any resources that were allocated in initialise_render(). void cleanup_render() { /* TASK: * If you allocate any memory, be sure to release it here. * You may or may not need anything in this function, depending * on your implementation. */ }