comparison projects/d-box/Biquad.cpp @ 0:8a575ba3ab52

Initial commit.
author andrewm
date Fri, 31 Oct 2014 19:10:17 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:8a575ba3ab52
1 //
2 // Biquad.cpp
3 //
4 // Created by Nigel Redmon on 11/24/12
5 // EarLevel Engineering: earlevel.com
6 // Copyright 2012 Nigel Redmon
7 //
8 // For a complete explanation of the Biquad code:
9 // http://www.earlevel.com/main/2012/11/26/biquad-c-source-code/
10 //
11 // License:
12 //
13 // This source code is provided as is, without warranty.
14 // You may copy and distribute verbatim copies of this document.
15 // You may modify and use this source code to create binary code
16 // for your own purposes, free or commercial.
17 //
18
19 #include <math.h>
20 #include "Biquad.h"
21 #include <iostream>
22
23 Biquad::Biquad() {
24 type = bq_type_lowpass;
25 a0 = 1.0;
26 a1 = a2 = b1 = b2 = 0.0;
27 Fc = 0.50;
28 Q = 0.707;
29 peakGain = 0.0;
30 z1 = z2 = 0.0;
31 }
32
33 Biquad::Biquad(int type, double Fc, double Q, double peakGainDB) {
34 setBiquad(type, Fc, Q, peakGainDB);
35 z1 = z2 = 0.0;
36 }
37
38 Biquad::~Biquad() {
39 }
40
41 void Biquad::setType(int type) {
42 this->type = type;
43 calcBiquad();
44 }
45
46 void Biquad::setQ(double Q) {
47 this->Q = Q;
48 calcBiquad();
49 }
50
51 void Biquad::setFc(double Fc) {
52 this->Fc = Fc;
53 calcBiquad();
54 }
55
56 void Biquad::setPeakGain(double peakGainDB) {
57 this->peakGain = peakGainDB;
58 calcBiquad();
59 }
60
61 void Biquad::setBiquad(int type, double Fc, double Q, double peakGainDB) {
62 this->type = type;
63 this->Q = Q;
64 this->Fc = Fc;
65 startFc = Fc;
66 startQ = Q;
67 startPeakGain = peakGainDB;
68 setPeakGain(peakGainDB);
69 }
70
71 void Biquad::calcBiquad(void) {
72 double norm;
73 double V = pow(10, fabs(peakGain) / 20.0);
74 double K = tan(M_PI * Fc);
75 switch (this->type) {
76 case bq_type_lowpass:
77 norm = 1 / (1 + K / Q + K * K);
78 a0 = K * K * norm;
79 a1 = 2 * a0;
80 a2 = a0;
81 b1 = 2 * (K * K - 1) * norm;
82 b2 = (1 - K / Q + K * K) * norm;
83 break;
84
85 case bq_type_highpass:
86 norm = 1 / (1 + K / Q + K * K);
87 a0 = 1 * norm;
88 a1 = -2 * a0;
89 a2 = a0;
90 b1 = 2 * (K * K - 1) * norm;
91 b2 = (1 - K / Q + K * K) * norm;
92 break;
93
94 case bq_type_bandpass:
95 norm = 1 / (1 + K / Q + K * K);
96 a0 = K / Q * norm;
97 a1 = 0;
98 a2 = -a0;
99 b1 = 2 * (K * K - 1) * norm;
100 b2 = (1 - K / Q + K * K) * norm;
101 break;
102
103 case bq_type_notch:
104 norm = 1 / (1 + K / Q + K * K);
105 a0 = (1 + K * K) * norm;
106 a1 = 2 * (K * K - 1) * norm;
107 a2 = a0;
108 b1 = a1;
109 b2 = (1 - K / Q + K * K) * norm;
110 break;
111
112 case bq_type_peak:
113 if (peakGain >= 0) { // boost
114 norm = 1 / (1 + 1/Q * K + K * K);
115 a0 = (1 + V/Q * K + K * K) * norm;
116 a1 = 2 * (K * K - 1) * norm;
117 a2 = (1 - V/Q * K + K * K) * norm;
118 b1 = a1;
119 b2 = (1 - 1/Q * K + K * K) * norm;
120 }
121 else { // cut
122 norm = 1 / (1 + V/Q * K + K * K);
123 a0 = (1 + 1/Q * K + K * K) * norm;
124 a1 = 2 * (K * K - 1) * norm;
125 a2 = (1 - 1/Q * K + K * K) * norm;
126 b1 = a1;
127 b2 = (1 - V/Q * K + K * K) * norm;
128 }
129 break;
130 case bq_type_lowshelf:
131 if (peakGain >= 0) { // boost
132 norm = 1 / (1 + sqrt(2) * K + K * K);
133 a0 = (1 + sqrt(2*V) * K + V * K * K) * norm;
134 a1 = 2 * (V * K * K - 1) * norm;
135 a2 = (1 - sqrt(2*V) * K + V * K * K) * norm;
136 b1 = 2 * (K * K - 1) * norm;
137 b2 = (1 - sqrt(2) * K + K * K) * norm;
138 }
139 else { // cut
140 norm = 1 / (1 + sqrt(2*V) * K + V * K * K);
141 a0 = (1 + sqrt(2) * K + K * K) * norm;
142 a1 = 2 * (K * K - 1) * norm;
143 a2 = (1 - sqrt(2) * K + K * K) * norm;
144 b1 = 2 * (V * K * K - 1) * norm;
145 b2 = (1 - sqrt(2*V) * K + V * K * K) * norm;
146 }
147 break;
148 case bq_type_highshelf:
149 if (peakGain >= 0) { // boost
150 norm = 1 / (1 + sqrt(2) * K + K * K);
151 a0 = (V + sqrt(2*V) * K + K * K) * norm;
152 a1 = 2 * (K * K - V) * norm;
153 a2 = (V - sqrt(2*V) * K + K * K) * norm;
154 b1 = 2 * (K * K - 1) * norm;
155 b2 = (1 - sqrt(2) * K + K * K) * norm;
156 }
157 else { // cut
158 norm = 1 / (V + sqrt(2*V) * K + K * K);
159 a0 = (1 + sqrt(2) * K + K * K) * norm;
160 a1 = 2 * (K * K - 1) * norm;
161 a2 = (1 - sqrt(2) * K + K * K) * norm;
162 b1 = 2 * (K * K - V) * norm;
163 b2 = (V - sqrt(2*V) * K + K * K) * norm;
164 }
165 break;
166 }
167
168 return;
169 }