Mercurial > hg > beaglert
diff projects/d-box/Biquad.cpp @ 0:8a575ba3ab52
Initial commit.
author | andrewm |
---|---|
date | Fri, 31 Oct 2014 19:10:17 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/projects/d-box/Biquad.cpp Fri Oct 31 19:10:17 2014 +0100 @@ -0,0 +1,169 @@ +// +// Biquad.cpp +// +// Created by Nigel Redmon on 11/24/12 +// EarLevel Engineering: earlevel.com +// Copyright 2012 Nigel Redmon +// +// For a complete explanation of the Biquad code: +// http://www.earlevel.com/main/2012/11/26/biquad-c-source-code/ +// +// License: +// +// This source code is provided as is, without warranty. +// You may copy and distribute verbatim copies of this document. +// You may modify and use this source code to create binary code +// for your own purposes, free or commercial. +// + +#include <math.h> +#include "Biquad.h" +#include <iostream> + +Biquad::Biquad() { + type = bq_type_lowpass; + a0 = 1.0; + a1 = a2 = b1 = b2 = 0.0; + Fc = 0.50; + Q = 0.707; + peakGain = 0.0; + z1 = z2 = 0.0; +} + +Biquad::Biquad(int type, double Fc, double Q, double peakGainDB) { + setBiquad(type, Fc, Q, peakGainDB); + z1 = z2 = 0.0; +} + +Biquad::~Biquad() { +} + +void Biquad::setType(int type) { + this->type = type; + calcBiquad(); +} + +void Biquad::setQ(double Q) { + this->Q = Q; + calcBiquad(); +} + +void Biquad::setFc(double Fc) { + this->Fc = Fc; + calcBiquad(); +} + +void Biquad::setPeakGain(double peakGainDB) { + this->peakGain = peakGainDB; + calcBiquad(); +} + +void Biquad::setBiquad(int type, double Fc, double Q, double peakGainDB) { + this->type = type; + this->Q = Q; + this->Fc = Fc; + startFc = Fc; + startQ = Q; + startPeakGain = peakGainDB; + setPeakGain(peakGainDB); +} + +void Biquad::calcBiquad(void) { + double norm; + double V = pow(10, fabs(peakGain) / 20.0); + double K = tan(M_PI * Fc); + switch (this->type) { + case bq_type_lowpass: + norm = 1 / (1 + K / Q + K * K); + a0 = K * K * norm; + a1 = 2 * a0; + a2 = a0; + b1 = 2 * (K * K - 1) * norm; + b2 = (1 - K / Q + K * K) * norm; + break; + + case bq_type_highpass: + norm = 1 / (1 + K / Q + K * K); + a0 = 1 * norm; + a1 = -2 * a0; + a2 = a0; + b1 = 2 * (K * K - 1) * norm; + b2 = (1 - K / Q + K * K) * norm; + break; + + case bq_type_bandpass: + norm = 1 / (1 + K / Q + K * K); + a0 = K / Q * norm; + a1 = 0; + a2 = -a0; + b1 = 2 * (K * K - 1) * norm; + b2 = (1 - K / Q + K * K) * norm; + break; + + case bq_type_notch: + norm = 1 / (1 + K / Q + K * K); + a0 = (1 + K * K) * norm; + a1 = 2 * (K * K - 1) * norm; + a2 = a0; + b1 = a1; + b2 = (1 - K / Q + K * K) * norm; + break; + + case bq_type_peak: + if (peakGain >= 0) { // boost + norm = 1 / (1 + 1/Q * K + K * K); + a0 = (1 + V/Q * K + K * K) * norm; + a1 = 2 * (K * K - 1) * norm; + a2 = (1 - V/Q * K + K * K) * norm; + b1 = a1; + b2 = (1 - 1/Q * K + K * K) * norm; + } + else { // cut + norm = 1 / (1 + V/Q * K + K * K); + a0 = (1 + 1/Q * K + K * K) * norm; + a1 = 2 * (K * K - 1) * norm; + a2 = (1 - 1/Q * K + K * K) * norm; + b1 = a1; + b2 = (1 - V/Q * K + K * K) * norm; + } + break; + case bq_type_lowshelf: + if (peakGain >= 0) { // boost + norm = 1 / (1 + sqrt(2) * K + K * K); + a0 = (1 + sqrt(2*V) * K + V * K * K) * norm; + a1 = 2 * (V * K * K - 1) * norm; + a2 = (1 - sqrt(2*V) * K + V * K * K) * norm; + b1 = 2 * (K * K - 1) * norm; + b2 = (1 - sqrt(2) * K + K * K) * norm; + } + else { // cut + norm = 1 / (1 + sqrt(2*V) * K + V * K * K); + a0 = (1 + sqrt(2) * K + K * K) * norm; + a1 = 2 * (K * K - 1) * norm; + a2 = (1 - sqrt(2) * K + K * K) * norm; + b1 = 2 * (V * K * K - 1) * norm; + b2 = (1 - sqrt(2*V) * K + V * K * K) * norm; + } + break; + case bq_type_highshelf: + if (peakGain >= 0) { // boost + norm = 1 / (1 + sqrt(2) * K + K * K); + a0 = (V + sqrt(2*V) * K + K * K) * norm; + a1 = 2 * (K * K - V) * norm; + a2 = (V - sqrt(2*V) * K + K * K) * norm; + b1 = 2 * (K * K - 1) * norm; + b2 = (1 - sqrt(2) * K + K * K) * norm; + } + else { // cut + norm = 1 / (V + sqrt(2*V) * K + K * K); + a0 = (1 + sqrt(2) * K + K * K) * norm; + a1 = 2 * (K * K - 1) * norm; + a2 = (1 - sqrt(2) * K + K * K) * norm; + b1 = 2 * (K * K - V) * norm; + b2 = (V - sqrt(2*V) * K + K * K) * norm; + } + break; + } + + return; +}