annotate include/Utilities.h @ 168:eb62ed0d67e3

- edited karplusStrong pd example
author chnrx <chris.heinrichs@gmail.com>
date Thu, 03 Dec 2015 19:13:14 +0000
parents c529505203ee
children f1012082f142
rev   line source
andrewm@66 1 /**
andrewm@66 2 * @file
andrewm@66 3 * @brief Wiring-inspired utility functions and macros
andrewm@0 4 *
andrewm@66 5 * Macros and functions for I/O and data processing taking after the Wiring
andrewm@66 6 * (Arduino) language. This code began as part of the Hackable Instruments
andrewm@66 7 * project (EPSRC) at Queen Mary University of London, 2013-14.
andrewm@66 8 *
andrewm@66 9 * (c) 2014-15 Andrew McPherson, Victor Zappi and Giulio Moro,
andrewm@66 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13 #ifndef UTILITIES_H_
andrewm@0 14 #define UTILITIES_H_
andrewm@0 15
andrewm@45 16 #include "BeagleRT.h"
andrewm@45 17
andrewm@95 18 /**
andrewm@95 19 * \defgroup iofunctions I/O functions and constants
andrewm@95 20 *
andrewm@95 21 * These functions and macros are used for audio, analog and digital I/O. All the
andrewm@95 22 * I/O functions require the BeagleRTContext data structure from render() to be passed
andrewm@95 23 * in. This means that these functions are, by design, \b only usable from within
andrewm@95 24 * the rendering thread.
andrewm@95 25 *
andrewm@95 26 * The naming conventions are loosely derived from the Arduino environment, and the
andrewm@95 27 * syntax is similar. Unlike Arduino, the I/O functions require the frame number at which
andrewm@95 28 * the read or write should take place, since all I/O happens synchronously with the
andrewm@95 29 * audio clock.
andrewm@95 30 *
andrewm@95 31 * @{
andrewm@95 32 */
andrewm@95 33
andrewm@72 34 #define HIGH 0x1
andrewm@72 35 #define LOW 0x0
andrewm@72 36
andrewm@72 37 #define INPUT 0x0
andrewm@72 38 #define OUTPUT 0x1
andrewm@72 39
andrewm@95 40 /** @} */
andrewm@95 41
andrewm@95 42 /**
andrewm@95 43 * \ingroup wiring
andrewm@95 44 *
andrewm@95 45 * @{
andrewm@95 46 */
andrewm@95 47
andrewm@66 48 /// Set the given bit in \c word to 1.
andrewm@45 49 #define setBit(word,bit) ((word) | (1 << (bit)))
andrewm@66 50
andrewm@66 51 /// Clear the given bit in \c word to 0.
andrewm@45 52 #define clearBit(word,bit) ((word) &~ (1 << (bit)))
andrewm@66 53
andrewm@66 54 /// Check if the given bit in \c word is 1 (returns nonzero) or 0 (returns zero).
andrewm@45 55 #define getBit(word,bit) (((word) >> (bit)) & 1)
andrewm@66 56
andrewm@66 57 /// Set/clear the given bit in \c word to \c value.
andrewm@45 58 #define changeBit(word,bit,value) ((clearBit((word),(bit))) | ((value) << (bit)))
andrewm@45 59
andrewm@95 60 /** @} */
andrewm@95 61
andrewm@95 62 /**
andrewm@95 63 * \ingroup iofunctions
andrewm@95 64 *
andrewm@95 65 * @{
andrewm@95 66 */
andrewm@95 67
andrewm@45 68 #if 1
andrewm@56 69 // Note: pinMode(), analogWrite() and digitalWrite() should be able to be called from setup()
andrewm@56 70 // Likewise, thread launch should be able to be called from setup()
andrewm@45 71 // Also, make volume change functions callable from render() thread -- as an aux task?
andrewm@45 72
andrewm@68 73 /**
andrewm@68 74 * \brief Read an analog input, specifying the frame number (when to read) and the channel.
andrewm@68 75 *
andrewm@68 76 * This function returns the value of an analog input, at the time indicated by \c frame.
andrewm@68 77 * The returned value ranges from 0 to 1, corresponding to a voltage range of 0 to 4.096V.
andrewm@68 78 *
andrewm@68 79 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@68 80 * \param frame Which frame (i.e. what time) to read the analog input. Valid values range
andrewm@68 81 * from 0 to (context->analogFrames - 1).
andrewm@68 82 * \param channel Which analog input to read. Valid values are between 0 and
andrewm@68 83 * (context->analogChannels - 1), typically 0 to 7 by default.
andrewm@68 84 * \return Value of the analog input, range 0 to 1.
andrewm@68 85 */
andrewm@45 86 float analogReadFrame(BeagleRTContext *context, int frame, int channel);
andrewm@68 87
andrewm@68 88 /**
andrewm@68 89 * \brief Write an analog output, specifying the frame number (when to write) and the channel.
andrewm@68 90 *
andrewm@68 91 * This function sets the value of an analog output, at the time indicated by \c frame. Valid
andrewm@68 92 * values are between 0 and 1, corresponding to the range 0 to 5V.
andrewm@68 93 *
andrewm@68 94 * The value written will persist for all future frames if BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST
andrewm@68 95 * is set in context->flags. This is the default behaviour.
andrewm@68 96 *
andrewm@68 97 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@68 98 * \param frame Which frame (i.e. what time) to write the analog output. Valid values range
andrewm@68 99 * from 0 to (context->analogFrames - 1).
andrewm@68 100 * \param channel Which analog output to write. Valid values are between 0 and
andrewm@68 101 * (context->analogChannels - 1), typically 0 to 7 by default.
andrewm@68 102 * \param value Value to write to the output, range 0 to 1.
andrewm@68 103 */
andrewm@45 104 void analogWriteFrame(BeagleRTContext *context, int frame, int channel, float value);
andrewm@68 105
andrewm@68 106 /**
andrewm@68 107 * \brief Write an analog output, specifying the frame number (when to write) and the channel.
andrewm@68 108 *
andrewm@68 109 * This function sets the value of an analog output, at the time indicated by \c frame. Valid
andrewm@68 110 * values are between 0 and 1, corresponding to the range 0 to 5V.
andrewm@68 111 *
andrewm@68 112 * Unlike analogWriteFrame(), the value written will affect \b only the frame specified, with
andrewm@72 113 * future values unchanged. This is faster than analogWriteFrame() so is better suited
andrewm@68 114 * to applications where every frame will be written to a different value. If
andrewm@68 115 * BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST is not set within context->flags, then
andrewm@68 116 * analogWriteFrameOnce() and analogWriteFrame() are equivalent.
andrewm@68 117 *
andrewm@68 118 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@68 119 * \param frame Which frame (i.e. what time) to write the analog output. Valid values range
andrewm@68 120 * from 0 to (context->analogFrames - 1).
andrewm@68 121 * \param channel Which analog output to write. Valid values are between 0 and
andrewm@68 122 * (context->analogChannels - 1), typically 0 to 7 by default.
andrewm@68 123 * \param value Value to write to the output, range 0 to 1.
andrewm@68 124 */
andrewm@45 125 void analogWriteFrameOnce(BeagleRTContext *context, int frame, int channel, float value);
andrewm@45 126
andrewm@72 127 /**
andrewm@72 128 * \brief Read a digital input, specifying the frame number (when to read) and the pin.
andrewm@72 129 *
andrewm@72 130 * This function returns the value of a digital input, at the time indicated by \c frame.
andrewm@72 131 * The value is 0 if the pin is low, and nonzero if the pin is high (3.3V).
andrewm@72 132 *
andrewm@72 133 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72 134 * \param frame Which frame (i.e. what time) to read the digital input. Valid values range
andrewm@72 135 * from 0 to (context->digitalFrames - 1).
andrewm@72 136 * \param channel Which digital pin to read. 16 pins across the P8 and P9 headers of the
andrewm@72 137 * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72 138 * digital_gpio_mapping.h.
andrewm@72 139 * \return Value of the digital input.
andrewm@72 140 */
andrewm@45 141 int digitalReadFrame(BeagleRTContext *context, int frame, int channel);
andrewm@72 142
andrewm@72 143 /**
andrewm@72 144 * \brief Write a digital output, specifying the frame number (when to write) and the pin.
andrewm@72 145 *
andrewm@72 146 * This function sets the value of a digital output, at the time indicated by \c frame.
andrewm@72 147 * A value of 0 sets the pin low; any other value sets the pin high (3.3V).
andrewm@72 148 *
andrewm@72 149 * The value written will persist for all future frames.
andrewm@72 150 *
andrewm@72 151 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72 152 * \param frame Which frame (i.e. what time) to write the digital output. Valid values range
andrewm@72 153 * from 0 to (context->digitalFrames - 1).
andrewm@72 154 * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72 155 * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72 156 * digital_gpio_mapping.h.
andrewm@72 157 * \param value Value to write to the output.
andrewm@72 158 */
andrewm@45 159 void digitalWriteFrame(BeagleRTContext *context, int frame, int channel, int value);
andrewm@72 160
andrewm@72 161 /**
andrewm@72 162 * \brief Write a digital output, specifying the frame number (when to write) and the pin.
andrewm@72 163 *
andrewm@72 164 * This function sets the value of a digital output, at the time indicated by \c frame.
andrewm@72 165 * A value of 0 sets the pin low; any other value sets the pin high (3.3V).
andrewm@72 166 *
andrewm@72 167 * Unlike digitalWriteFrame(), the value written will affect \b only the frame specified, with
andrewm@72 168 * future values unchanged. This is faster than digitalWriteFrame() so is better suited
andrewm@72 169 * to applications where every frame will be written to a different value.
andrewm@72 170 *
andrewm@72 171 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72 172 * \param frame Which frame (i.e. what time) to write the digital output. Valid values range
andrewm@72 173 * from 0 to (context->digitalFrames - 1).
andrewm@72 174 * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72 175 * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72 176 * digital_gpio_mapping.h.
andrewm@72 177 * \param value Value to write to the output.
andrewm@72 178 */
andrewm@45 179 void digitalWriteFrameOnce(BeagleRTContext *context, int frame, int channel, int value);
andrewm@45 180
andrewm@72 181 /**
andrewm@72 182 * \brief Set the direction of a digital pin to input or output.
andrewm@72 183 *
andrewm@72 184 * This function sets the direction of a digital pin, at the time indicated by \c frame.
andrewm@72 185 * Valid values are \c INPUT and \c OUTPUT. All pins begin as inputs by default.
andrewm@72 186 *
andrewm@72 187 * The value written will persist for all future frames.
andrewm@72 188 *
andrewm@72 189 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72 190 * \param frame Which frame (i.e. what time) to set the pin direction. Valid values range
andrewm@72 191 * from 0 to (context->digitalFrames - 1).
andrewm@72 192 * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72 193 * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72 194 * digital_gpio_mapping.h.
andrewm@72 195 * \param value Direction of the pin (\c INPUT or \c OUTPUT).
andrewm@72 196 */
andrewm@45 197 void pinModeFrame(BeagleRTContext *context, int frame, int channel, int mode);
andrewm@72 198
andrewm@72 199 /**
andrewm@72 200 * \brief Set the direction of a digital pin to input or output.
andrewm@72 201 *
andrewm@72 202 * This function sets the direction of a digital pin, at the time indicated by \c frame.
andrewm@72 203 * Valid values are \c INPUT and \c OUTPUT. All pins begin as inputs by default.
andrewm@72 204 *
andrewm@72 205 * The value written will affect only the specified frame.
andrewm@72 206 *
andrewm@72 207 * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72 208 * \param frame Which frame (i.e. what time) to set the pin direction. Valid values range
andrewm@72 209 * from 0 to (context->digitalFrames - 1).
andrewm@72 210 * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72 211 * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72 212 * digital_gpio_mapping.h.
andrewm@72 213 * \param value Direction of the pin (\c INPUT or \c OUTPUT).
andrewm@72 214 */
andrewm@45 215 void pinModeFrameOnce(BeagleRTContext *context, int frame, int channel, int mode);
andrewm@45 216
andrewm@95 217 /** @} */
andrewm@95 218
andrewm@45 219 #else
andrewm@13 220
giuliomoro@19 221 // Macros for accessing the analog values: usable _only_ within render()
andrewm@5 222
giuliomoro@19 223 // Read an Analog input from input pin p at frame f
giuliomoro@23 224 #define analogRead(p, f) (analogIn[(f)*gNumAnalogChannels + (p)])
giuliomoro@19 225 // Write an Analog output frame at output pin p, frame f, to value v
giuliomoro@23 226 #define analogWriteFrame(p, f, v) (analogOut[(f)*gNumAnalogChannels + (p)] = (v))
giuliomoro@23 227 #define analogWrite(pin, frame, value) \
giuliomoro@18 228 (({do {\
giuliomoro@19 229 for (int _privateI=(frame); _privateI<numAnalogFrames; _privateI++){ \
giuliomoro@23 230 analogWriteFrame(pin,_privateI,value); \
giuliomoro@18 231 }\
giuliomoro@18 232 } while (0);}),(void)0)\
andrewm@5 233
andrewm@45 234
giuliomoro@19 235 //digital API:
giuliomoro@33 236 #define setDigitalDirectionFrame(pin,frame,direction) digital[(frame)]=changeBit(digital[(frame)],(pin),(direction)),void(0)
giuliomoro@33 237 #define setDigitalDirection(pin,frame,direction)\
giuliomoro@33 238 (({do {\
giuliomoro@33 239 for(int _privateI=(frame); _privateI<numDigitalFrames; _privateI++)\
giuliomoro@33 240 setDigitalDirectionFrame(pin,_privateI,direction);\
giuliomoro@33 241 } while (0);}), (void)0)
giuliomoro@19 242 #define digitalWriteAll(frame,value) digital[(frame)]=0xffff0000*(!(!value));
giuliomoro@16 243 //sets the bit in the high word, clears the bit in the low word (just in case the direction was not previously set)
giuliomoro@19 244 #define digitalWriteFrame(pin, frame, value) digital[(frame)]=( changeBit(digital[(frame)], (pin+16), (value)) & (0xffffffff-(1<<(pin))) ) //could have been done with two subsequent assignments
giuliomoro@18 245 #define digitalWrite(pin, frame, value) \
giuliomoro@18 246 (({do {\
giuliomoro@33 247 for (int _privateI=(frame); _privateI<numDigitalFrames; _privateI++) \
giuliomoro@18 248 digitalWriteFrame(pin,_privateI,value); \
giuliomoro@18 249 } while (0);}),(void)0)\
giuliomoro@18 250
giuliomoro@19 251 #define digitalRead(pin, frame) ( getBit(digital[(frame)], pin+16) )
giuliomoro@16 252
andrewm@45 253 #endif
andrewm@45 254
andrewm@66 255 /**
andrewm@95 256 * \defgroup wiring Wiring language support
andrewm@95 257 *
andrewm@95 258 * These are functions found in the Wiring (Arduino) language which are not directly
andrewm@95 259 * related to I/O but are provided as a convenience.
andrewm@95 260 *
andrewm@95 261 * @{
andrewm@95 262 */
andrewm@95 263
andrewm@95 264 /**
andrewm@66 265 * \brief Linearly rescale a number from one range of values to another.
andrewm@66 266 *
andrewm@66 267 * This function linearly scales values of \c x such that the range in_min to
andrewm@66 268 * in_max at the input corresponds to the range out_min to out_max
andrewm@66 269 * at the output. Values outside this range are extrapolated.
andrewm@66 270 *
andrewm@66 271 * This function behaves identically to the function of the same name in Processing. It
andrewm@66 272 * is also similar to the corresponding function in Arduino, except that it supports floating
andrewm@66 273 * point values.
andrewm@66 274 *
andrewm@66 275 * \param x Input value to be mapped.
andrewm@66 276 * \param in_min Lower bound of the input range.
andrewm@66 277 * \param in_max Upper bound of the input range.
andrewm@66 278 * \param out_min Lower bound of the output range.
andrewm@66 279 * \param out_max Upper bound of the output range.
andrewm@66 280 * \return Rescaled value.
andrewm@66 281 */
andrewm@0 282 float map(float x, float in_min, float in_max, float out_min, float out_max);
andrewm@66 283
andrewm@66 284 /**
andrewm@66 285 * \brief Constrain a number to stay within a given range.
andrewm@66 286 *
andrewm@66 287 * This function constrains \c x to remain within the range min_val to
andrewm@66 288 * max_val. Values of \c x outside this range are clipped to the edges
andrewm@66 289 * of the range.
andrewm@66 290 *
andrewm@66 291 * This function behaves identically to the function of the same name in Processing. It
andrewm@66 292 * is also similar to the corresponding function in Arduino, except that it supports floating
andrewm@66 293 * point values.
andrewm@66 294 *
andrewm@66 295 * \param x Input value to be constrained.
andrewm@66 296 * \param min_val Minimum possible value.
andrewm@66 297 * \param max_val Maximum possible value.
andrewm@66 298 * \return Constrained value.
andrewm@66 299 */
andrewm@0 300 float constrain(float x, float min_val, float max_val);
andrewm@0 301
andrewm@95 302 /** @} */
andrewm@95 303
andrewm@0 304 #endif /* UTILITIES_H_ */