robert@464
|
1 /*
|
robert@464
|
2 ____ _____ _ _
|
robert@464
|
3 | __ )| ____| | / \
|
robert@464
|
4 | _ \| _| | | / _ \
|
robert@464
|
5 | |_) | |___| |___ / ___ \
|
robert@464
|
6 |____/|_____|_____/_/ \_\
|
robert@464
|
7
|
robert@464
|
8 The platform for ultra-low latency audio and sensor processing
|
robert@464
|
9
|
robert@464
|
10 http://bela.io
|
robert@464
|
11
|
robert@464
|
12 A project of the Augmented Instruments Laboratory within the
|
robert@464
|
13 Centre for Digital Music at Queen Mary University of London.
|
robert@464
|
14 http://www.eecs.qmul.ac.uk/~andrewm
|
robert@464
|
15
|
robert@464
|
16 (c) 2016 Augmented Instruments Laboratory: Andrew McPherson,
|
robert@464
|
17 Astrid Bin, Liam Donovan, Christian Heinrichs, Robert Jack,
|
robert@464
|
18 Giulio Moro, Laurel Pardue, Victor Zappi. All rights reserved.
|
robert@464
|
19
|
robert@464
|
20 The Bela software is distributed under the GNU Lesser General Public License
|
robert@464
|
21 (LGPL 3.0), available here: https://www.gnu.org/licenses/lgpl-3.0.txt
|
robert@464
|
22 */
|
robert@464
|
23
|
robert@464
|
24 #include <Bela.h>
|
robert@464
|
25 #include <cmath>
|
robert@464
|
26
|
robert@464
|
27 float gFrequency = 440.0;
|
robert@464
|
28 float gPhase;
|
robert@464
|
29 float gInverseSampleRate;
|
robert@464
|
30
|
robert@464
|
31 bool setup(BelaContext *context, void *userData)
|
robert@464
|
32 {
|
robert@464
|
33 gInverseSampleRate = 1.0 / context->audioSampleRate;
|
chris@546
|
34 gPhase = 0.0;
|
robert@464
|
35
|
robert@464
|
36 return true;
|
robert@464
|
37 }
|
robert@464
|
38
|
robert@464
|
39 void render(BelaContext *context, void *userData)
|
robert@464
|
40 {
|
robert@464
|
41 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
robert@464
|
42 float out = 0.8f * sinf(gPhase);
|
robert@464
|
43 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
|
robert@464
|
44 if(gPhase > 2.0 * M_PI)
|
robert@464
|
45 gPhase -= 2.0 * M_PI;
|
robert@464
|
46
|
chris@543
|
47 for(unsigned int channel = 0; channel < context->audioOutChannels; channel++) {
|
robert@464
|
48 // Two equivalent ways to write this code
|
robert@464
|
49
|
robert@464
|
50 // The long way, using the buffers directly:
|
chris@543
|
51 // context->audioOut[n * context->audioOutChannels + channel] = out;
|
robert@464
|
52
|
robert@464
|
53 // Or using the macros:
|
robert@464
|
54 audioWrite(context, n, channel, out);
|
robert@464
|
55 }
|
robert@464
|
56 }
|
robert@464
|
57 }
|
robert@464
|
58
|
robert@464
|
59 void cleanup(BelaContext *context, void *userData)
|
robert@464
|
60 {
|
robert@464
|
61
|
robert@464
|
62 }
|
robert@464
|
63
|
robert@464
|
64
|
robert@464
|
65 /**
|
robert@500
|
66 \example sinetone/render.cpp
|
robert@464
|
67
|
robert@464
|
68 Producing your first bleep!
|
robert@464
|
69 ---------------------------
|
robert@464
|
70
|
robert@464
|
71 This sketch is the hello world of embedded interactive audio. Better known as bleep, it
|
robert@464
|
72 produces a sine tone.
|
robert@464
|
73
|
robert@464
|
74 The frequency of the sine tone is determined by a global variable, `gFrequency`
|
robert@464
|
75 (line 12). The sine tone is produced by incrementing the phase of a sin function
|
robert@464
|
76 on every audio frame.
|
robert@464
|
77
|
robert@464
|
78 In render() you'll see a nested for loop structure. You'll see this in all Bela projects.
|
robert@464
|
79 The first for loop cycles through 'audioFrames', the second through 'audioChannels' (in this case left 0 and right 1).
|
robert@464
|
80 It is good to familiarise yourself with this structure as it's fundamental to producing sound with the system.
|
robert@464
|
81 */
|