annotate examples/audio_in_FFT/render.cpp @ 372:db2fe4e1b88e prerelease

Doxygen content added to each example render.cpp. References to AnalogReadFrame etc. removed from doxygen content.
author Robert Jack <robert.h.jack@gmail.com>
date Thu, 09 Jun 2016 18:16:05 +0100
parents e4392164b458
children 3bed6b09223c
rev   line source
robert@372 1 /*
robert@372 2 ____ _____ _ _
robert@372 3 | __ )| ____| | / \
robert@372 4 | _ \| _| | | / _ \
robert@372 5 | |_) | |___| |___ / ___ \
robert@372 6 |____/|_____|_____/_/ \_\.io
robert@372 7
robert@372 8 */
robert@372 9
victor@4 10 /*
victor@4 11 * render.cpp
victor@4 12 *
victor@4 13 * Created on: Oct 24, 2014
victor@4 14 * Author: parallels
victor@4 15 */
victor@4 16
robert@372 17 /**
robert@372 18 \example 4_audio_FFT
robert@372 19
robert@372 20 Fast Fourier Transform
robert@372 21 ----------------------
robert@372 22
robert@372 23 This sketch performs an FFT (Fast Fourier Transform) on incoming audio. It uses
robert@372 24 the NE10 library, included at the top of the file (line 11).
robert@372 25
robert@372 26 Read the documentation on the NE10 library [here](http://projectne10.github.io/Ne10/doc/annotated.html).
robert@372 27
robert@372 28 The variables `timeDomainIn`, `timeDomainOut` and `frequencyDomain` are
robert@372 29 variables of the struct `ne10_fft_cpx_float32_t` [http://projectne10.github.io/Ne10/doc/structne10__fft__cpx__float32__t.html](http://projectne10.github.io/Ne10/doc/structne10__fft__cpx__float32__t.html).
robert@372 30 These are declared at the top of the file (line 21), and memory is allocated
robert@372 31 for them in `setup()` (line 41).
robert@372 32
robert@372 33 In `render()` a `for` loop performs the FFT which is performed on each sample,
robert@372 34 and the resulting output is placed on each channel.
robert@372 35 */
victor@4 36
giuliomoro@301 37 #include <Bela.h>
victor@4 38 #include <rtdk.h>
victor@4 39 #include <NE10.h> // neon library
victor@4 40 #include <cmath>
victor@4 41
andrewm@5 42 int gFFTSize;
andrewm@5 43 float gFFTScaleFactor = 0;
victor@4 44
victor@4 45 int gReadPointer = 0;
victor@4 46 int gWritePointer = 0;
victor@4 47
victor@4 48 // FFT vars
andrewm@5 49 ne10_fft_cpx_float32_t* timeDomainIn;
andrewm@5 50 ne10_fft_cpx_float32_t* timeDomainOut;
victor@4 51 ne10_fft_cpx_float32_t* frequencyDomain;
victor@4 52 ne10_fft_cfg_float32_t cfg;
victor@4 53
andrewm@56 54 // setup() is called once before the audio rendering starts.
victor@4 55 // Use it to perform any initialisation and allocation which is dependent
victor@4 56 // on the period size or sample rate.
victor@4 57 //
victor@4 58 // userData holds an opaque pointer to a data structure that was passed
victor@4 59 // in from the call to initAudio().
victor@4 60 //
victor@4 61 // Return true on success; returning false halts the program.
victor@4 62
giuliomoro@301 63 bool setup(BelaContext *context, void *userData)
victor@4 64 {
victor@4 65 // Retrieve a parameter passed in from the initAudio() call
andrewm@5 66 gFFTSize = *(int *)userData;
andrewm@5 67 gFFTScaleFactor = 1.0f / (float)gFFTSize;
victor@4 68
andrewm@5 69 timeDomainIn = (ne10_fft_cpx_float32_t*) NE10_MALLOC (gFFTSize * sizeof (ne10_fft_cpx_float32_t));
andrewm@5 70 timeDomainOut = (ne10_fft_cpx_float32_t*) NE10_MALLOC (gFFTSize * sizeof (ne10_fft_cpx_float32_t));
andrewm@5 71 frequencyDomain = (ne10_fft_cpx_float32_t*) NE10_MALLOC (gFFTSize * sizeof (ne10_fft_cpx_float32_t));
andrewm@5 72 cfg = ne10_fft_alloc_c2c_float32 (gFFTSize);
victor@4 73
andrewm@5 74 memset(timeDomainOut, 0, gFFTSize * sizeof (ne10_fft_cpx_float32_t));
victor@4 75
victor@4 76 return true;
victor@4 77 }
victor@4 78
victor@4 79 // render() is called regularly at the highest priority by the audio engine.
victor@4 80 // Input and output are given from the audio hardware and the other
victor@4 81 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
victor@4 82 // will be 0.
victor@4 83
giuliomoro@301 84 void render(BelaContext *context, void *userData)
victor@4 85 {
andrewm@52 86 for(unsigned int n = 0; n < context->audioFrames; n++) {
andrewm@52 87 timeDomainIn[gReadPointer].r = (ne10_float32_t) ((context->audioIn[n*context->audioChannels] +
andrewm@52 88 context->audioIn[n*context->audioChannels+1]) * 0.5);
andrewm@5 89 timeDomainIn[gReadPointer].i = 0;
victor@4 90
andrewm@5 91 if(++gReadPointer >= gFFTSize)
andrewm@5 92 {
andrewm@5 93 //FFT
andrewm@5 94 ne10_fft_c2c_1d_float32_neon (frequencyDomain, timeDomainIn, cfg->twiddles, cfg->factors, gFFTSize, 0);
victor@4 95
andrewm@5 96 //Do frequency domain stuff
victor@4 97
andrewm@5 98 //IFFT
andrewm@5 99 ne10_fft_c2c_1d_float32_neon (timeDomainOut, frequencyDomain, cfg->twiddles, cfg->factors, gFFTSize, 1);
victor@4 100
andrewm@5 101 gReadPointer = 0;
andrewm@5 102 gWritePointer = 0;
andrewm@5 103 }
victor@4 104
andrewm@56 105 for(unsigned int channel = 0; channel < context->audioChannels; channel++)
andrewm@52 106 context->audioOut[n * context->audioChannels + channel] = (float) timeDomainOut[gWritePointer].r * gFFTScaleFactor;
andrewm@5 107 gWritePointer++;
victor@4 108 }
victor@4 109 }
victor@4 110
andrewm@56 111 // cleanup() is called once at the end, after the audio has stopped.
andrewm@56 112 // Release any resources that were allocated in setup().
victor@4 113
giuliomoro@301 114 void cleanup(BelaContext *context, void *userData)
victor@4 115 {
andrewm@5 116 NE10_FREE(timeDomainIn);
andrewm@5 117 NE10_FREE(timeDomainOut);
victor@4 118 NE10_FREE(frequencyDomain);
victor@4 119 NE10_FREE(cfg);
victor@4 120 }