annotate projects/oscillator_bank/render.cpp @ 224:97faaf985164 mergingClockSync

Added callback for Midi channel messages
author Giulio Moro <giuliomoro@yahoo.it>
date Tue, 08 Mar 2016 15:49:42 +0000
parents 3c3a1357657d
children ac8eb07afcf5
rev   line source
andrewm@0 1 /*
andrewm@0 2 * render.cpp
andrewm@0 3 *
andrewm@0 4 * Created on: Oct 24, 2014
andrewm@0 5 * Author: parallels
andrewm@0 6 */
andrewm@0 7
andrewm@0 8
andrewm@56 9 #include <BeagleRT.h>
andrewm@56 10 #include <Utilities.h>
andrewm@0 11 #include <rtdk.h>
andrewm@0 12 #include <cstdlib>
andrewm@0 13 #include <cmath>
andrewm@0 14 #include <cstring>
andrewm@0 15 #include <time.h>
andrewm@0 16
andrewm@0 17 const float kMinimumFrequency = 20.0f;
andrewm@0 18 const float kMaximumFrequency = 8000.0f;
andrewm@0 19
andrewm@0 20 float *gWavetable; // Buffer holding the precalculated sine lookup table
andrewm@0 21 float *gPhases; // Buffer holding the phase of each oscillator
andrewm@0 22 float *gFrequencies; // Buffer holding the frequencies of each oscillator
andrewm@0 23 float *gAmplitudes; // Buffer holding the amplitudes of each oscillator
andrewm@0 24 float *gDFrequencies; // Buffer holding the derivatives of frequency
andrewm@0 25 float *gDAmplitudes; // Buffer holding the derivatives of amplitude
andrewm@0 26
andrewm@0 27 float gAudioSampleRate;
andrewm@0 28 int gSampleCount; // Sample counter for indicating when to update frequencies
andrewm@0 29 float gNewMinFrequency;
andrewm@0 30 float gNewMaxFrequency;
andrewm@0 31
andrewm@0 32 // Task for handling the update of the frequencies using the matrix
andrewm@0 33 AuxiliaryTask gFrequencyUpdateTask;
andrewm@0 34
andrewm@0 35 // These settings are carried over from main.cpp
andrewm@0 36 // Setting global variables is an alternative approach
andrewm@56 37 // to passing a structure to userData in setup()
andrewm@0 38
andrewm@0 39 extern int gNumOscillators;
andrewm@0 40 extern int gWavetableLength;
andrewm@0 41
andrewm@0 42 void recalculate_frequencies();
andrewm@0 43
andrewm@0 44 extern "C" {
andrewm@0 45 // Function prototype for ARM assembly implementation of oscillator bank
andrewm@0 46 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
andrewm@0 47 int activePartialNum, int lookupTableSize,
andrewm@0 48 float *phases, float *frequencies, float *amplitudes,
andrewm@0 49 float *freqDerivatives, float *ampDerivatives,
andrewm@0 50 float *lookupTable);
andrewm@0 51 }
andrewm@0 52
andrewm@56 53 // setup() is called once before the audio rendering starts.
andrewm@0 54 // Use it to perform any initialisation and allocation which is dependent
andrewm@0 55 // on the period size or sample rate.
andrewm@0 56 //
andrewm@0 57 // userData holds an opaque pointer to a data structure that was passed
andrewm@0 58 // in from the call to initAudio().
andrewm@0 59 //
andrewm@0 60 // Return true on success; returning false halts the program.
andrewm@56 61 bool setup(BeagleRTContext *context, void *userData)
andrewm@0 62 {
andrewm@0 63 srandom(time(NULL));
andrewm@0 64
andrewm@52 65 if(context->audioChannels != 2) {
andrewm@14 66 rt_printf("Error: this example needs stereo audio enabled\n");
andrewm@14 67 return false;
andrewm@14 68 }
andrewm@14 69
andrewm@0 70 // Initialise the sine wavetable
andrewm@0 71 if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
andrewm@0 72 rt_printf("Error allocating wavetable\n");
andrewm@0 73 return false;
andrewm@0 74 }
andrewm@0 75 for(int n = 0; n < gWavetableLength + 1; n++)
andrewm@0 76 gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);
andrewm@0 77
andrewm@0 78 // Allocate the other buffers
andrewm@0 79 if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
andrewm@0 80 rt_printf("Error allocating phase buffer\n");
andrewm@0 81 return false;
andrewm@0 82 }
andrewm@0 83 if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 84 rt_printf("Error allocating frequency buffer\n");
andrewm@0 85 return false;
andrewm@0 86 }
andrewm@0 87 if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 88 rt_printf("Error allocating amplitude buffer\n");
andrewm@0 89 return false;
andrewm@0 90 }
andrewm@0 91 if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 92 rt_printf("Error allocating frequency derivative buffer\n");
andrewm@0 93 return false;
andrewm@0 94 }
andrewm@0 95 if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 96 rt_printf("Error allocating amplitude derivative buffer\n");
andrewm@0 97 return false;
andrewm@0 98 }
andrewm@0 99
andrewm@0 100 // Initialise buffer contents
andrewm@0 101
andrewm@0 102 float freq = kMinimumFrequency;
andrewm@0 103 float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;
andrewm@0 104
andrewm@0 105 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 106 gPhases[n] = 0.0;
andrewm@0 107
andrewm@52 108 if(context->analogFrames == 0) {
andrewm@0 109 // Random frequencies when used without matrix
andrewm@0 110 gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
andrewm@0 111 }
andrewm@0 112 else {
andrewm@0 113 // Constant spread of frequencies when used with matrix
andrewm@0 114 gFrequencies[n] = freq;
andrewm@0 115 freq += increment;
andrewm@0 116 }
andrewm@0 117
andrewm@0 118 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@52 119 gFrequencies[n] *= (float)gWavetableLength / context->audioSampleRate;
andrewm@0 120 gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
andrewm@0 121 gDFrequencies[n] = gDAmplitudes[n] = 0.0;
andrewm@0 122 }
andrewm@0 123
andrewm@45 124 increment = 0;
andrewm@45 125 freq = 440.0;
andrewm@45 126
andrewm@45 127 for(int n = 0; n < gNumOscillators; n++) {
andrewm@45 128 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@45 129 // to avoid weird phase effects
andrewm@45 130 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@45 131 float newFreq = freq * randScale;
andrewm@45 132
andrewm@45 133 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@52 134 gFrequencies[n] = newFreq * (float)gWavetableLength / context->audioSampleRate;
andrewm@45 135
andrewm@45 136 freq += increment;
andrewm@45 137 }
andrewm@45 138
andrewm@0 139 // Initialise auxiliary tasks
andrewm@52 140 if((gFrequencyUpdateTask = BeagleRT_createAuxiliaryTask(&recalculate_frequencies, 85, "beaglert-update-frequencies")) == 0)
andrewm@0 141 return false;
andrewm@0 142
andrewm@52 143 //for(int n = 0; n < gNumOscillators; n++)
andrewm@52 144 // rt_printf("%f\n", gFrequencies[n]);
andrewm@45 145
andrewm@52 146 gAudioSampleRate = context->audioSampleRate;
andrewm@0 147 gSampleCount = 0;
andrewm@0 148
andrewm@0 149 return true;
andrewm@0 150 }
andrewm@0 151
andrewm@0 152 // render() is called regularly at the highest priority by the audio engine.
andrewm@0 153 // Input and output are given from the audio hardware and the other
andrewm@0 154 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
andrewm@0 155 // will be 0.
andrewm@0 156
andrewm@52 157 void render(BeagleRTContext *context, void *userData)
andrewm@0 158 {
andrewm@0 159 // Initialise buffer to 0
andrewm@52 160 memset(context->audioOut, 0, 2 * context->audioFrames * sizeof(float));
andrewm@0 161
andrewm@0 162 // Render audio frames
andrewm@52 163 oscillator_bank_neon(context->audioFrames, context->audioOut,
andrewm@0 164 gNumOscillators, gWavetableLength,
andrewm@0 165 gPhases, gFrequencies, gAmplitudes,
andrewm@0 166 gDFrequencies, gDAmplitudes,
andrewm@0 167 gWavetable);
andrewm@0 168
andrewm@52 169 if(context->analogFrames != 0 && (gSampleCount += context->audioFrames) >= 128) {
andrewm@0 170 gSampleCount = 0;
andrewm@52 171 gNewMinFrequency = map(context->analogIn[0], 0, 1.0, 1000.0f, 8000.0f);
andrewm@52 172 gNewMaxFrequency = map(context->analogIn[1], 0, 1.0, 1000.0f, 8000.0f);
andrewm@0 173
andrewm@0 174 // Make sure max >= min
andrewm@0 175 if(gNewMaxFrequency < gNewMinFrequency) {
andrewm@0 176 float temp = gNewMaxFrequency;
andrewm@0 177 gNewMaxFrequency = gNewMinFrequency;
andrewm@0 178 gNewMinFrequency = temp;
andrewm@0 179 }
andrewm@0 180
andrewm@0 181 // Request that the lower-priority task run at next opportunity
andrewm@52 182 //BeagleRT_scheduleAuxiliaryTask(gFrequencyUpdateTask);
andrewm@0 183 }
andrewm@0 184 }
andrewm@0 185
andrewm@0 186 // This is a lower-priority call to update the frequencies which will happen
andrewm@0 187 // periodically when the matrix is enabled. By placing it at a lower priority,
andrewm@0 188 // it has minimal effect on the audio performance but it will take longer to
andrewm@0 189 // complete if the system is under heavy audio load.
andrewm@0 190
andrewm@0 191 void recalculate_frequencies()
andrewm@0 192 {
andrewm@0 193 float freq = gNewMinFrequency;
andrewm@0 194 float increment = (gNewMaxFrequency - gNewMinFrequency) / (float)gNumOscillators;
andrewm@0 195
andrewm@0 196 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 197 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@0 198 // to avoid weird phase effects
andrewm@0 199 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@0 200 float newFreq = freq * randScale;
andrewm@0 201
andrewm@0 202 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@0 203 gFrequencies[n] = newFreq * (float)gWavetableLength / gAudioSampleRate;
andrewm@0 204
andrewm@0 205 freq += increment;
andrewm@0 206 }
andrewm@0 207 }
andrewm@0 208
andrewm@0 209
andrewm@56 210 // cleanup() is called once at the end, after the audio has stopped.
andrewm@56 211 // Release any resources that were allocated in setup().
andrewm@0 212
andrewm@56 213 void cleanup(BeagleRTContext *context, void *userData)
andrewm@0 214 {
andrewm@0 215 free(gWavetable);
andrewm@0 216 free(gPhases);
andrewm@0 217 free(gFrequencies);
andrewm@0 218 free(gAmplitudes);
andrewm@0 219 free(gDFrequencies);
andrewm@0 220 free(gDAmplitudes);
andrewm@0 221 }