annotate projects/oscillator_bank/render.cpp @ 14:06f93bef7dd2

Updated remaining examples to new API
author andrewm
date Fri, 23 Jan 2015 15:35:10 +0000
parents 8a575ba3ab52
children 579c86316008
rev   line source
andrewm@0 1 /*
andrewm@0 2 * render.cpp
andrewm@0 3 *
andrewm@0 4 * Created on: Oct 24, 2014
andrewm@0 5 * Author: parallels
andrewm@0 6 */
andrewm@0 7
andrewm@0 8
andrewm@0 9 #include "../../include/RTAudio.h"
andrewm@0 10 #include "../../include/Utilities.h"
andrewm@0 11 #include <rtdk.h>
andrewm@0 12 #include <cstdlib>
andrewm@0 13 #include <cmath>
andrewm@0 14 #include <cstring>
andrewm@0 15 #include <time.h>
andrewm@0 16
andrewm@0 17 const float kMinimumFrequency = 20.0f;
andrewm@0 18 const float kMaximumFrequency = 8000.0f;
andrewm@0 19
andrewm@0 20 float *gWavetable; // Buffer holding the precalculated sine lookup table
andrewm@0 21 float *gPhases; // Buffer holding the phase of each oscillator
andrewm@0 22 float *gFrequencies; // Buffer holding the frequencies of each oscillator
andrewm@0 23 float *gAmplitudes; // Buffer holding the amplitudes of each oscillator
andrewm@0 24 float *gDFrequencies; // Buffer holding the derivatives of frequency
andrewm@0 25 float *gDAmplitudes; // Buffer holding the derivatives of amplitude
andrewm@0 26
andrewm@0 27 float gAudioSampleRate;
andrewm@0 28 int gSampleCount; // Sample counter for indicating when to update frequencies
andrewm@0 29 float gNewMinFrequency;
andrewm@0 30 float gNewMaxFrequency;
andrewm@0 31
andrewm@0 32 // Task for handling the update of the frequencies using the matrix
andrewm@0 33 AuxiliaryTask gFrequencyUpdateTask;
andrewm@0 34
andrewm@0 35 // These settings are carried over from main.cpp
andrewm@0 36 // Setting global variables is an alternative approach
andrewm@0 37 // to passing a structure to userData in initialise_render()
andrewm@0 38
andrewm@0 39 extern int gNumOscillators;
andrewm@0 40 extern int gWavetableLength;
andrewm@0 41
andrewm@0 42 void recalculate_frequencies();
andrewm@0 43
andrewm@0 44 extern "C" {
andrewm@0 45 // Function prototype for ARM assembly implementation of oscillator bank
andrewm@0 46 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
andrewm@0 47 int activePartialNum, int lookupTableSize,
andrewm@0 48 float *phases, float *frequencies, float *amplitudes,
andrewm@0 49 float *freqDerivatives, float *ampDerivatives,
andrewm@0 50 float *lookupTable);
andrewm@0 51 }
andrewm@0 52
andrewm@0 53 // initialise_render() is called once before the audio rendering starts.
andrewm@0 54 // Use it to perform any initialisation and allocation which is dependent
andrewm@0 55 // on the period size or sample rate.
andrewm@0 56 //
andrewm@0 57 // userData holds an opaque pointer to a data structure that was passed
andrewm@0 58 // in from the call to initAudio().
andrewm@0 59 //
andrewm@0 60 // Return true on success; returning false halts the program.
andrewm@14 61 bool initialise_render(int numMatrixChannels, int numAudioChannels,
andrewm@14 62 int numMatrixFramesPerPeriod,
andrewm@14 63 int numAudioFramesPerPeriod,
andrewm@14 64 float matrixSampleRate, float audioSampleRate,
andrewm@14 65 void *userData)
andrewm@0 66 {
andrewm@0 67 srandom(time(NULL));
andrewm@0 68
andrewm@14 69 if(numAudioChannels != 2) {
andrewm@14 70 rt_printf("Error: this example needs stereo audio enabled\n");
andrewm@14 71 return false;
andrewm@14 72 }
andrewm@14 73
andrewm@0 74 // Initialise the sine wavetable
andrewm@0 75 if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
andrewm@0 76 rt_printf("Error allocating wavetable\n");
andrewm@0 77 return false;
andrewm@0 78 }
andrewm@0 79 for(int n = 0; n < gWavetableLength + 1; n++)
andrewm@0 80 gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);
andrewm@0 81
andrewm@0 82 // Allocate the other buffers
andrewm@0 83 if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
andrewm@0 84 rt_printf("Error allocating phase buffer\n");
andrewm@0 85 return false;
andrewm@0 86 }
andrewm@0 87 if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 88 rt_printf("Error allocating frequency buffer\n");
andrewm@0 89 return false;
andrewm@0 90 }
andrewm@0 91 if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 92 rt_printf("Error allocating amplitude buffer\n");
andrewm@0 93 return false;
andrewm@0 94 }
andrewm@0 95 if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 96 rt_printf("Error allocating frequency derivative buffer\n");
andrewm@0 97 return false;
andrewm@0 98 }
andrewm@0 99 if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 100 rt_printf("Error allocating amplitude derivative buffer\n");
andrewm@0 101 return false;
andrewm@0 102 }
andrewm@0 103
andrewm@0 104 // Initialise buffer contents
andrewm@0 105
andrewm@0 106 float freq = kMinimumFrequency;
andrewm@0 107 float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;
andrewm@0 108
andrewm@0 109 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 110 gPhases[n] = 0.0;
andrewm@0 111
andrewm@0 112 if(numMatrixFramesPerPeriod == 0) {
andrewm@0 113 // Random frequencies when used without matrix
andrewm@0 114 gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
andrewm@0 115 }
andrewm@0 116 else {
andrewm@0 117 // Constant spread of frequencies when used with matrix
andrewm@0 118 gFrequencies[n] = freq;
andrewm@0 119 freq += increment;
andrewm@0 120 }
andrewm@0 121
andrewm@0 122 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@0 123 gFrequencies[n] *= (float)gWavetableLength / audioSampleRate;
andrewm@0 124 gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
andrewm@0 125 gDFrequencies[n] = gDAmplitudes[n] = 0.0;
andrewm@0 126 }
andrewm@0 127
andrewm@0 128 // Initialise auxiliary tasks
andrewm@0 129 if((gFrequencyUpdateTask = createAuxiliaryTaskLoop(&recalculate_frequencies, 90, "beaglert-update-frequencies")) == 0)
andrewm@0 130 return false;
andrewm@0 131
andrewm@0 132 gAudioSampleRate = audioSampleRate;
andrewm@0 133 gSampleCount = 0;
andrewm@0 134
andrewm@0 135 return true;
andrewm@0 136 }
andrewm@0 137
andrewm@0 138 // render() is called regularly at the highest priority by the audio engine.
andrewm@0 139 // Input and output are given from the audio hardware and the other
andrewm@0 140 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
andrewm@0 141 // will be 0.
andrewm@0 142
andrewm@0 143 void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
andrewm@0 144 uint16_t *matrixIn, uint16_t *matrixOut)
andrewm@0 145 {
andrewm@0 146 // Initialise buffer to 0
andrewm@0 147 memset(audioOut, 0, 2 * numAudioFrames * sizeof(float));
andrewm@0 148
andrewm@0 149 // Render audio frames
andrewm@0 150 oscillator_bank_neon(numAudioFrames, audioOut,
andrewm@0 151 gNumOscillators, gWavetableLength,
andrewm@0 152 gPhases, gFrequencies, gAmplitudes,
andrewm@0 153 gDFrequencies, gDAmplitudes,
andrewm@0 154 gWavetable);
andrewm@0 155
andrewm@0 156 if(numMatrixFrames != 0 && (gSampleCount += numAudioFrames) >= 128) {
andrewm@0 157 gSampleCount = 0;
andrewm@0 158 gNewMinFrequency = map(matrixIn[0], 0, MATRIX_MAX, 20.0f, 8000.0f);
andrewm@0 159 gNewMaxFrequency = map(matrixIn[1], 0, MATRIX_MAX, 20.0f, 8000.0f);
andrewm@0 160
andrewm@0 161 // Make sure max >= min
andrewm@0 162 if(gNewMaxFrequency < gNewMinFrequency) {
andrewm@0 163 float temp = gNewMaxFrequency;
andrewm@0 164 gNewMaxFrequency = gNewMinFrequency;
andrewm@0 165 gNewMinFrequency = temp;
andrewm@0 166 }
andrewm@0 167
andrewm@0 168 // Request that the lower-priority task run at next opportunity
andrewm@0 169 scheduleAuxiliaryTask(gFrequencyUpdateTask);
andrewm@0 170 }
andrewm@0 171 }
andrewm@0 172
andrewm@0 173 // This is a lower-priority call to update the frequencies which will happen
andrewm@0 174 // periodically when the matrix is enabled. By placing it at a lower priority,
andrewm@0 175 // it has minimal effect on the audio performance but it will take longer to
andrewm@0 176 // complete if the system is under heavy audio load.
andrewm@0 177
andrewm@0 178 void recalculate_frequencies()
andrewm@0 179 {
andrewm@0 180 float freq = gNewMinFrequency;
andrewm@0 181 float increment = (gNewMaxFrequency - gNewMinFrequency) / (float)gNumOscillators;
andrewm@0 182
andrewm@0 183 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 184 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@0 185 // to avoid weird phase effects
andrewm@0 186 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@0 187 float newFreq = freq * randScale;
andrewm@0 188
andrewm@0 189 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@0 190 gFrequencies[n] = newFreq * (float)gWavetableLength / gAudioSampleRate;
andrewm@0 191
andrewm@0 192 freq += increment;
andrewm@0 193 }
andrewm@0 194 }
andrewm@0 195
andrewm@0 196
andrewm@0 197 // cleanup_render() is called once at the end, after the audio has stopped.
andrewm@0 198 // Release any resources that were allocated in initialise_render().
andrewm@0 199
andrewm@0 200 void cleanup_render()
andrewm@0 201 {
andrewm@0 202 free(gWavetable);
andrewm@0 203 free(gPhases);
andrewm@0 204 free(gFrequencies);
andrewm@0 205 free(gAmplitudes);
andrewm@0 206 free(gDFrequencies);
andrewm@0 207 free(gDAmplitudes);
andrewm@0 208 }