andrewm@0
|
1 /*
|
andrewm@0
|
2 * render.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Created on: May 28, 2014
|
andrewm@0
|
5 * Author: Victor Zappi
|
andrewm@0
|
6 */
|
andrewm@0
|
7
|
giuliomoro@301
|
8 #include <Bela.h>
|
andrewm@56
|
9 #include <PRU.h>
|
andrewm@56
|
10
|
andrewm@0
|
11 #include "StatusLED.h"
|
andrewm@0
|
12 #include "config.h"
|
andrewm@0
|
13 #include "OscillatorBank.h"
|
andrewm@0
|
14 #include "FeedbackOscillator.h"
|
andrewm@0
|
15 #include "ADSR.h"
|
andrewm@0
|
16 #include "FIRfilter.h"
|
andrewm@0
|
17 #include <assert.h>
|
andrewm@0
|
18 #include <cmath>
|
andrewm@0
|
19 #include <vector>
|
andrewm@0
|
20
|
andrewm@0
|
21 #undef DBOX_CAPE_TEST
|
andrewm@0
|
22
|
andrewm@48
|
23 // Mappings from pin numbers on PCB to actual DAC channels
|
andrewm@48
|
24 // This gives the DAC and ADC connectors the same effective pinout
|
andrewm@373
|
25 // Update June 2016: this is no longer needed in the latest Bela
|
andrewm@373
|
26 // release, but is kept here for convenience: it used to be
|
andrewm@373
|
27 // 6 4 2 0 1 3 5 7 for the DAC pins
|
andrewm@373
|
28 #define DAC_PIN0 0
|
andrewm@373
|
29 #define DAC_PIN1 1
|
andrewm@48
|
30 #define DAC_PIN2 2
|
andrewm@373
|
31 #define DAC_PIN3 3
|
andrewm@373
|
32 #define DAC_PIN4 4
|
andrewm@373
|
33 #define DAC_PIN5 5
|
andrewm@373
|
34 #define DAC_PIN6 6
|
andrewm@48
|
35 #define DAC_PIN7 7
|
andrewm@48
|
36
|
andrewm@48
|
37 #define ADC_PIN0 0
|
andrewm@48
|
38 #define ADC_PIN1 1
|
andrewm@48
|
39 #define ADC_PIN2 2
|
andrewm@48
|
40 #define ADC_PIN3 3
|
andrewm@48
|
41 #define ADC_PIN4 4
|
andrewm@48
|
42 #define ADC_PIN5 5
|
andrewm@48
|
43 #define ADC_PIN6 6
|
andrewm@48
|
44 #define ADC_PIN7 7
|
andrewm@48
|
45
|
andrewm@0
|
46 #define N_OCT 4.0 // maximum number of octaves on sensor 1
|
andrewm@0
|
47
|
andrewm@0
|
48 extern vector<OscillatorBank*> gOscBanks;
|
andrewm@0
|
49 extern int gCurrentOscBank;
|
andrewm@0
|
50 extern int gNextOscBank;
|
andrewm@0
|
51 extern PRU *gPRU;
|
andrewm@0
|
52 extern StatusLED gStatusLED;
|
andrewm@0
|
53 extern bool gIsLoading;
|
andrewm@0
|
54 extern bool gAudioIn;
|
andrewm@0
|
55
|
andrewm@0
|
56 float *gOscillatorBuffer1, *gOscillatorBuffer2;
|
andrewm@0
|
57 float *gOscillatorBufferRead, *gOscillatorBufferWrite;
|
andrewm@0
|
58 int gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
59 int gOscillatorBufferReadCurrentSize = 0;
|
andrewm@0
|
60 int gOscillatorBufferWriteCurrentSize = 0;
|
andrewm@0
|
61 bool gOscillatorNeedsRender = false;
|
andrewm@0
|
62
|
andrewm@0
|
63 int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix
|
andrewm@0
|
64
|
andrewm@0
|
65 // Wavetable which changes in response to an oscillator
|
andrewm@0
|
66 float *gDynamicWavetable;
|
andrewm@0
|
67 int gDynamicWavetableLength;
|
andrewm@0
|
68 bool gDynamicWavetableNeedsRender = false;
|
andrewm@0
|
69
|
andrewm@0
|
70 // These variables handle the hysteresis oscillator used for setting the playback speed
|
andrewm@0
|
71 bool gSpeedHysteresisOscillatorRising = false;
|
andrewm@0
|
72 int gSpeedHysteresisLastTrigger = 0;
|
andrewm@0
|
73
|
andrewm@0
|
74 // These variables handle the feedback oscillator used for controlling the wavetable
|
andrewm@0
|
75 FeedbackOscillator gFeedbackOscillator;
|
andrewm@0
|
76 float *gFeedbackOscillatorTable;
|
andrewm@0
|
77 int gFeedbackOscillatorTableLength;
|
andrewm@0
|
78
|
andrewm@0
|
79 // This comes from sensor.cpp where it records the most recent touch location on
|
andrewm@0
|
80 // sensor 0.
|
andrewm@0
|
81 extern float gSensor0LatestTouchPos;
|
andrewm@0
|
82 extern int gSensor0LatestTouchNum;
|
andrewm@50
|
83 float gPitchLatestInput = 0;
|
andrewm@0
|
84
|
andrewm@0
|
85 extern float gSensor1LatestTouchPos[];
|
andrewm@0
|
86 //extern float gSensor1LatestTouchSizes[];
|
andrewm@0
|
87 extern int gSensor1LatestTouchCount;
|
andrewm@0
|
88 extern int gSensor1LatestTouchIndex;
|
andrewm@0
|
89 int gSensor1LastTouchIndex = -1;
|
andrewm@0
|
90 int gSensor1InputDelayCounter = -1;
|
andrewm@0
|
91 int gSensor1InputIndex = 0;
|
andrewm@0
|
92 float gSensor1MatrixTouchPos[5] = {0};
|
andrewm@0
|
93
|
andrewm@0
|
94 // FSR value from matrix input
|
andrewm@0
|
95 extern int gLastFSRValue;
|
andrewm@0
|
96
|
andrewm@0
|
97 // Loop points from matrix input 4
|
andrewm@0
|
98 const int gLoopPointsInputBufferSize = 256;
|
andrewm@50
|
99 float gLoopPointsInputBuffer[gLoopPointsInputBufferSize];
|
andrewm@0
|
100 int gLoopPointsInputBufferPointer = 0;
|
andrewm@50
|
101 float gLoopPointMin = 0, gLoopPointMax = 0;
|
andrewm@0
|
102
|
andrewm@0
|
103 // multiplier to activate or mute audio in
|
andrewm@0
|
104 int audioInStatus = 0;
|
andrewm@0
|
105
|
andrewm@0
|
106 // xenomai timer
|
andrewm@0
|
107 SRTIME prevChangeNs = 0;
|
andrewm@0
|
108
|
andrewm@0
|
109 // pitch vars
|
andrewm@0
|
110 float octaveSplitter;
|
andrewm@50
|
111 float semitones[((int)N_OCT*12)+1];
|
andrewm@0
|
112 float deltaTouch = 0;
|
andrewm@51
|
113 float deltaWeightP = 0.5 / 65536.0;
|
andrewm@51
|
114 float deltaWeightI = 0.0005 / 65536.0;
|
andrewm@0
|
115
|
andrewm@0
|
116 // filter vars
|
andrewm@0
|
117 ne10_fir_instance_f32_t filter[2];
|
andrewm@0
|
118 ne10_float32_t *filterIn[2];
|
andrewm@0
|
119 ne10_float32_t *filterOut[2];
|
andrewm@0
|
120 ne10_uint32_t blockSize;
|
andrewm@0
|
121 ne10_float32_t *filterState[2];
|
andrewm@0
|
122 ne10_float32_t prevFiltered[2];
|
andrewm@0
|
123 int filterGain = 80;
|
andrewm@0
|
124 ADSR PeakBurst[2];
|
andrewm@0
|
125 float peak[2];
|
andrewm@0
|
126 float peakThresh = 0.2;
|
andrewm@0
|
127
|
andrewm@0
|
128 // Tasks for lower-priority calculation
|
andrewm@0
|
129 AuxiliaryTask gMediumPriorityRender, gLowPriorityRender;
|
andrewm@0
|
130
|
andrewm@0
|
131
|
andrewm@0
|
132 extern "C" {
|
andrewm@0
|
133 // Function prototype for ARM assembly implementation of oscillator bank
|
andrewm@0
|
134 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
|
andrewm@0
|
135 int activePartialNum, int lookupTableSize,
|
andrewm@0
|
136 float *phases, float *frequencies, float *amplitudes,
|
andrewm@0
|
137 float *freqDerivatives, float *ampDerivatives,
|
andrewm@0
|
138 float *lookupTable);
|
andrewm@0
|
139
|
andrewm@0
|
140 void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
141 float *tableIn, float *tableOut);
|
andrewm@0
|
142 }
|
andrewm@0
|
143
|
andrewm@0
|
144 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
145 float *tableIn, float *tableOut,
|
andrewm@0
|
146 float *sineTable, float sineMix);
|
andrewm@0
|
147
|
andrewm@50
|
148 inline float hysteresis_oscillator(float input, float risingThreshold,
|
andrewm@50
|
149 float fallingThreshold, bool *rising);
|
andrewm@50
|
150
|
andrewm@50
|
151 void render_medium_prio();
|
andrewm@50
|
152 void render_low_prio();
|
andrewm@0
|
153
|
andrewm@0
|
154 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
155 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
156 uint16_t *matrixIn, uint16_t *matrixOut);
|
andrewm@0
|
157 #endif
|
andrewm@0
|
158
|
giuliomoro@301
|
159 bool setup(BelaContext *context, void *userData) {
|
andrewm@0
|
160 int oscBankHopSize = *(int *)userData;
|
andrewm@0
|
161
|
andrewm@50
|
162 if(context->analogChannels != 8) {
|
andrewm@14
|
163 printf("Error: D-Box needs matrix enabled with 8 channels.\n");
|
andrewm@14
|
164 return false;
|
andrewm@14
|
165 }
|
andrewm@14
|
166
|
andrewm@0
|
167 // Allocate two buffers for rendering oscillator bank samples
|
andrewm@0
|
168 // One will be used for writing in the background while the other is used for reading
|
andrewm@0
|
169 // on the audio thread. 8-byte alignment needed for the NEON code.
|
andrewm@50
|
170 if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * context->audioChannels * sizeof(float))) {
|
andrewm@0
|
171 printf("Error allocating render buffers\n");
|
andrewm@0
|
172 return false;
|
andrewm@0
|
173 }
|
andrewm@50
|
174 if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * context->audioChannels * sizeof(float))) {
|
andrewm@0
|
175 printf("Error allocating render buffers\n");
|
andrewm@0
|
176 return false;
|
andrewm@0
|
177 }
|
andrewm@0
|
178 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
179 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
180
|
andrewm@50
|
181 memset(gOscillatorBuffer1, 0, oscBankHopSize * context->audioChannels * sizeof(float));
|
andrewm@50
|
182 memset(gOscillatorBuffer2, 0, oscBankHopSize * context->audioChannels * sizeof(float));
|
andrewm@0
|
183
|
andrewm@0
|
184 // Initialise the dynamic wavetable used by the oscillator bank
|
andrewm@0
|
185 // It should match the size of the static one already allocated in the OscillatorBank object
|
andrewm@0
|
186 // Don't forget a guard point at the end of the table
|
andrewm@0
|
187 gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize;
|
andrewm@0
|
188 if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) {
|
andrewm@0
|
189 printf("Error allocating wavetable\n");
|
andrewm@0
|
190 return false;
|
andrewm@0
|
191 }
|
andrewm@0
|
192
|
andrewm@50
|
193 gFeedbackOscillator.initialise(8192, 10.0, context->analogSampleRate);
|
andrewm@0
|
194
|
andrewm@0
|
195 for(int n = 0; n < gDynamicWavetableLength + 1; n++)
|
andrewm@0
|
196 gDynamicWavetable[n] = 0;
|
andrewm@0
|
197
|
andrewm@0
|
198 // pitch
|
andrewm@50
|
199 float midPos = 0.5;
|
andrewm@50
|
200 octaveSplitter = 1.0 / N_OCT;
|
andrewm@0
|
201 int numOfSemi = 12*N_OCT;
|
andrewm@0
|
202 int middleSemitone = 12*N_OCT/2;
|
andrewm@0
|
203 int lastSemitone = middleSemitone+numOfSemi/2;
|
andrewm@50
|
204 float inc = 1.0 / (N_OCT*12.0);
|
andrewm@0
|
205 int i = -1;
|
andrewm@0
|
206 for(int semi=middleSemitone; semi<=lastSemitone; semi++)
|
andrewm@0
|
207 semitones[semi] = ( midPos + (++i)*inc) + 0.5;
|
andrewm@0
|
208 i = 0;
|
andrewm@0
|
209 for(int semi=middleSemitone-1; semi>=0; semi--)
|
andrewm@0
|
210 semitones[semi] = ( midPos - (++i)*inc) + 0.5;
|
andrewm@0
|
211
|
andrewm@0
|
212 if(gAudioIn)
|
andrewm@0
|
213 audioInStatus = 1;
|
andrewm@0
|
214
|
andrewm@0
|
215 // filter
|
andrewm@50
|
216 blockSize = context->audioFrames;
|
andrewm@0
|
217 filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
218 filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
219 filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
220 filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
221 filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
222 filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
223 ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize);
|
andrewm@0
|
224 ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize);
|
andrewm@0
|
225
|
andrewm@0
|
226 // peak outputs
|
andrewm@50
|
227 PeakBurst[0].setAttackRate(.00001 * context->analogSampleRate);
|
andrewm@50
|
228 PeakBurst[1].setAttackRate(.00001 * context->analogSampleRate);
|
andrewm@50
|
229 PeakBurst[0].setDecayRate(.5 * context->analogSampleRate);
|
andrewm@50
|
230 PeakBurst[1].setDecayRate(.5 * context->analogSampleRate);
|
andrewm@0
|
231 PeakBurst[0].setSustainLevel(0.0);
|
andrewm@0
|
232 PeakBurst[1].setSustainLevel(0.0);
|
andrewm@0
|
233
|
andrewm@0
|
234 // Initialise auxiliary tasks
|
andrewm@303
|
235 if((gMediumPriorityRender = Bela_createAuxiliaryTask(&render_medium_prio, BELA_AUDIO_PRIORITY - 10, "dbox-calculation-medium")) == 0)
|
andrewm@0
|
236 return false;
|
andrewm@303
|
237 if((gLowPriorityRender = Bela_createAuxiliaryTask(&render_low_prio, BELA_AUDIO_PRIORITY - 15, "dbox-calculation-low")) == 0)
|
andrewm@0
|
238 return false;
|
andrewm@0
|
239
|
andrewm@0
|
240 return true;
|
andrewm@0
|
241 }
|
andrewm@0
|
242
|
giuliomoro@301
|
243 void render(BelaContext *context, void *userData)
|
andrewm@0
|
244 {
|
andrewm@0
|
245 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
246 render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut);
|
andrewm@0
|
247 #else
|
andrewm@0
|
248 if(gOscBanks[gCurrentOscBank]->state==bank_toreset)
|
andrewm@0
|
249 gOscBanks[gCurrentOscBank]->resetOscillators();
|
andrewm@0
|
250
|
andrewm@0
|
251 if(gOscBanks[gCurrentOscBank]->state==bank_playing)
|
andrewm@0
|
252 {
|
andrewm@50
|
253 assert(context->audioChannels == 2);
|
andrewm@0
|
254
|
andrewm@0
|
255 #ifdef OLD_OSCBANK
|
andrewm@50
|
256 memset(audioOut, 0, numAudioFrames * * sizeof(float));
|
andrewm@0
|
257
|
andrewm@0
|
258 /* Render the oscillator bank. The oscillator bank function is written in NEON assembly
|
andrewm@0
|
259 * and it strips out all extra checks, so find out in advance whether we can render a whole
|
andrewm@0
|
260 * block or whether the frame will increment in the middle of this buffer.
|
andrewm@0
|
261 */
|
andrewm@0
|
262
|
andrewm@0
|
263 int framesRemaining = numAudioFrames;
|
andrewm@0
|
264 float *audioOutWithOffset = audioOut;
|
andrewm@0
|
265
|
andrewm@0
|
266 while(framesRemaining > 0) {
|
andrewm@0
|
267 if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) {
|
andrewm@0
|
268 /* More frames left in this hop than we need this time. Render and finish */
|
andrewm@0
|
269 oscillator_bank_neon(framesRemaining, audioOutWithOffset,
|
andrewm@0
|
270 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
271 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
272 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
273 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
274 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
275 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
276 gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining;
|
andrewm@0
|
277 if(gOscBanks[gCurrentOscBank]->hopCounter <= 0)
|
andrewm@0
|
278 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
279 framesRemaining = 0;
|
andrewm@0
|
280 }
|
andrewm@0
|
281 else {
|
andrewm@0
|
282 /* More frames to render than are left in this hop. Render and decrement the
|
andrewm@0
|
283 * number of remaining frames; then advance to the next oscillator frame.
|
andrewm@0
|
284 */
|
andrewm@0
|
285 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset,
|
andrewm@0
|
286 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
287 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
288 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
289 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
290 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
291 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
292 framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@50
|
293 audioOutWithOffset += * gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
294 gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
295 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
296 }
|
andrewm@0
|
297 }
|
andrewm@0
|
298 #else
|
andrewm@50
|
299 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
andrewm@50
|
300 context->audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n]*audioInStatus;
|
andrewm@50
|
301 context->audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
302
|
andrewm@50
|
303 filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@50
|
304 filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
305
|
andrewm@0
|
306 /* FIXME why doesn't this work? */
|
andrewm@0
|
307 /*
|
andrewm@0
|
308 if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) {
|
andrewm@0
|
309 gOscillatorNeedsRender = true;
|
andrewm@0
|
310 scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
311 } */
|
andrewm@0
|
312
|
andrewm@0
|
313 if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) {
|
andrewm@0
|
314 // Finished reading from the buffer: swap to the next buffer
|
andrewm@0
|
315 if(gOscillatorBufferRead == gOscillatorBuffer1) {
|
andrewm@0
|
316 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
317 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
318 }
|
andrewm@0
|
319 else {
|
andrewm@0
|
320 gOscillatorBufferRead = gOscillatorBuffer1;
|
andrewm@0
|
321 gOscillatorBufferWrite = gOscillatorBuffer2;
|
andrewm@0
|
322 }
|
andrewm@0
|
323
|
andrewm@0
|
324 // New buffer size is whatever finished writing last hop
|
andrewm@0
|
325 gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize;
|
andrewm@0
|
326 gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
327
|
andrewm@0
|
328 gOscillatorNeedsRender = true;
|
giuliomoro@301
|
329 Bela_scheduleAuxiliaryTask(gMediumPriorityRender);
|
andrewm@0
|
330 }
|
andrewm@0
|
331 }
|
andrewm@0
|
332 #endif
|
andrewm@0
|
333 }
|
andrewm@0
|
334 else
|
andrewm@0
|
335 {
|
andrewm@50
|
336 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
andrewm@50
|
337 context->audioOut[2*n] = context->audioIn[2*n]*audioInStatus;
|
andrewm@50
|
338 context->audioOut[2*n + 1] = context->audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
339
|
andrewm@50
|
340 filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@50
|
341 filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
342 }
|
andrewm@0
|
343 }
|
andrewm@0
|
344
|
andrewm@0
|
345 // low pass filter audio in 1 and 2 for peak detection
|
andrewm@0
|
346 ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize);
|
andrewm@0
|
347 ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize);
|
andrewm@0
|
348
|
andrewm@50
|
349 for(unsigned int n = 0; n < context->analogFrames; n++) {
|
andrewm@0
|
350
|
andrewm@0
|
351
|
andrewm@0
|
352 /* Matrix Out 0, In 0
|
andrewm@0
|
353 *
|
andrewm@0
|
354 * CV loop
|
andrewm@0
|
355 * Controls pitch of sound
|
andrewm@0
|
356 */
|
andrewm@50
|
357 float touchPosInt = gSensor0LatestTouchPos;
|
andrewm@0
|
358 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@50
|
359 if(touchPosInt > 1.0) touchPosInt = 1.0;
|
andrewm@50
|
360 context->analogOut[n*8 + DAC_PIN0] = touchPosInt;
|
andrewm@0
|
361
|
andrewm@50
|
362 gPitchLatestInput = context->analogIn[n*8 + ADC_PIN0];
|
andrewm@0
|
363
|
andrewm@0
|
364
|
andrewm@0
|
365 /* Matrix Out 7
|
andrewm@0
|
366 *
|
andrewm@0
|
367 * Loop feedback with Matrix In 0
|
andrewm@0
|
368 * Controls discreet pitch
|
andrewm@0
|
369 */
|
andrewm@0
|
370 float deltaTarget = 0;
|
andrewm@0
|
371 int semitoneIndex = 0;
|
andrewm@0
|
372 if(gSensor0LatestTouchNum>0)
|
andrewm@0
|
373 {
|
andrewm@0
|
374 // current pitch is gPitchLatestInput, already retrieved
|
andrewm@50
|
375 semitoneIndex = ( gPitchLatestInput * 12 * N_OCT )+0.5; // closest semitone
|
andrewm@0
|
376 deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target
|
andrewm@51
|
377 deltaTouch += deltaTarget*(deltaWeightI); // update feedback [previous + current]
|
andrewm@0
|
378 }
|
andrewm@0
|
379 else
|
andrewm@0
|
380 deltaTouch = 0;
|
andrewm@0
|
381
|
andrewm@50
|
382 float nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out
|
andrewm@0
|
383 if(nextOut < 0) nextOut = 0; // clamp
|
andrewm@50
|
384 if(nextOut > 1.0) nextOut = 1.0; // clamp
|
andrewm@50
|
385 context->analogOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut
|
andrewm@0
|
386
|
andrewm@0
|
387
|
andrewm@0
|
388 /*
|
andrewm@0
|
389 * Matrix Out 1, In 1
|
andrewm@0
|
390 *
|
andrewm@0
|
391 * Hysteresis (comparator) oscillator
|
andrewm@0
|
392 * Controls speed of playback
|
andrewm@0
|
393 */
|
andrewm@0
|
394 bool wasRising = gSpeedHysteresisOscillatorRising;
|
andrewm@50
|
395 context->analogOut[n*8 + DAC_PIN1] = hysteresis_oscillator(context->analogIn[n*8 + ADC_PIN1], 48000.0/65536.0,
|
andrewm@50
|
396 16000.0/65536.0, &gSpeedHysteresisOscillatorRising);
|
andrewm@0
|
397
|
andrewm@0
|
398 // Find interval of zero crossing
|
andrewm@0
|
399 if(wasRising && !gSpeedHysteresisOscillatorRising) {
|
andrewm@0
|
400 int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger;
|
andrewm@0
|
401
|
andrewm@0
|
402 // Interval since last trigger will be the new hop size; calculate to set speed
|
andrewm@0
|
403 if(interval < 1)
|
andrewm@0
|
404 interval = 1;
|
andrewm@0
|
405 //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval;
|
andrewm@0
|
406 float speed = 144.0 / interval; // Normalise to a fixed expected speed
|
andrewm@0
|
407 gOscBanks[gCurrentOscBank]->setSpeed(speed);
|
andrewm@0
|
408
|
andrewm@0
|
409 gSpeedHysteresisLastTrigger = gMatrixSampleCount;
|
andrewm@0
|
410 }
|
andrewm@0
|
411
|
andrewm@0
|
412 /*
|
andrewm@0
|
413 * Matrix Out 2, In 2
|
andrewm@0
|
414 *
|
andrewm@0
|
415 * Feedback (phase shift) oscillator
|
andrewm@0
|
416 * Controls wavetable used for oscillator bank
|
andrewm@0
|
417 */
|
andrewm@0
|
418
|
andrewm@50
|
419 int tableLength = gFeedbackOscillator.process(context->analogIn[n*8 + ADC_PIN2], &context->analogOut[n*8 + DAC_PIN2]);
|
andrewm@0
|
420 if(tableLength != 0) {
|
andrewm@0
|
421 gFeedbackOscillatorTableLength = tableLength;
|
andrewm@0
|
422 gFeedbackOscillatorTable = gFeedbackOscillator.wavetable();
|
andrewm@0
|
423 gDynamicWavetableNeedsRender = true;
|
giuliomoro@301
|
424 Bela_scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
425 }
|
andrewm@0
|
426
|
andrewm@0
|
427 /*
|
andrewm@0
|
428 * Matrix Out 3, In 3
|
andrewm@0
|
429 *
|
andrewm@0
|
430 * CV loop with delay for time alignment
|
andrewm@0
|
431 * Touch positions from sensor 1
|
andrewm@0
|
432 * Change every 32 samples (ca. 1.5 ms)
|
andrewm@0
|
433 */
|
andrewm@0
|
434 volatile int touchCount = gSensor1LatestTouchCount;
|
andrewm@0
|
435 if(touchCount == 0)
|
andrewm@50
|
436 context->analogOut[n*8 + DAC_PIN3] = 0;
|
andrewm@0
|
437 else {
|
andrewm@0
|
438 int touchIndex = (gMatrixSampleCount >> 5) % touchCount;
|
andrewm@50
|
439 context->analogOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f / 65536.0f;
|
andrewm@0
|
440 if(touchIndex != gSensor1LastTouchIndex) {
|
andrewm@0
|
441 // Just changed to a new touch output. Reset the counter.
|
andrewm@0
|
442 // It will take 2*matrixFrames samples for this output to come back to the
|
andrewm@0
|
443 // ADC input. But we also want to read near the end of the 32 sample block;
|
andrewm@0
|
444 // let's say 24 samples into it.
|
andrewm@0
|
445
|
andrewm@0
|
446 // FIXME this won't work for p > 2
|
andrewm@50
|
447 gSensor1InputDelayCounter = 24 + 2*context->analogFrames;
|
andrewm@0
|
448 gSensor1InputIndex = touchIndex;
|
andrewm@0
|
449 }
|
andrewm@0
|
450 gSensor1LastTouchIndex = touchIndex;
|
andrewm@0
|
451 }
|
andrewm@0
|
452
|
andrewm@0
|
453 if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) {
|
andrewm@50
|
454 gSensor1MatrixTouchPos[gSensor1InputIndex] = context->analogIn[n*8 + ADC_PIN3];
|
andrewm@0
|
455 }
|
andrewm@0
|
456
|
andrewm@0
|
457 /* Matrix Out 4
|
andrewm@0
|
458 *
|
andrewm@0
|
459 * Sensor 1 last pos
|
andrewm@0
|
460 */
|
andrewm@50
|
461 touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex];
|
andrewm@0
|
462 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@50
|
463 if(touchPosInt > 1.0) touchPosInt = 1.0;
|
andrewm@50
|
464 context->analogOut[n*8 + DAC_PIN4] = touchPosInt;
|
andrewm@0
|
465
|
andrewm@0
|
466 /* Matrix In 4
|
andrewm@0
|
467 *
|
andrewm@0
|
468 * Loop points selector
|
andrewm@0
|
469 */
|
andrewm@50
|
470 gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = context->analogIn[n*8 + ADC_PIN4];
|
andrewm@0
|
471 if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) {
|
andrewm@0
|
472 // Find min and max values
|
andrewm@50
|
473 float loopMax = 0, loopMin = 1.0;
|
andrewm@0
|
474 for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
475 if(gLoopPointsInputBuffer[i] < loopMin)
|
andrewm@0
|
476 loopMin = gLoopPointsInputBuffer[i];
|
andrewm@0
|
477 if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/)
|
andrewm@0
|
478 loopMax = gLoopPointsInputBuffer[i];
|
andrewm@0
|
479 }
|
andrewm@0
|
480
|
andrewm@0
|
481 if(loopMin >= loopMax)
|
andrewm@0
|
482 loopMax = loopMin;
|
andrewm@0
|
483
|
andrewm@0
|
484 gLoopPointMax = loopMax;
|
andrewm@0
|
485 gLoopPointMin = loopMin;
|
andrewm@0
|
486 gLoopPointsInputBufferPointer = 0;
|
andrewm@0
|
487 }
|
andrewm@0
|
488
|
andrewm@0
|
489 /* Matrix Out 5
|
andrewm@0
|
490 *
|
andrewm@0
|
491 * Audio In 1 peak detection and peak burst output
|
andrewm@0
|
492 */
|
andrewm@0
|
493
|
andrewm@0
|
494 filterOut[0][n*2+1] *= filterGain;
|
andrewm@0
|
495 float burstOut = PeakBurst[0].getOutput();
|
andrewm@0
|
496 if( burstOut < 0.1)
|
andrewm@0
|
497 {
|
andrewm@0
|
498 if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) )
|
andrewm@0
|
499 {
|
andrewm@0
|
500 peak[0] = prevFiltered[0];
|
andrewm@0
|
501 PeakBurst[0].gate(1);
|
andrewm@0
|
502 }
|
andrewm@0
|
503 }
|
andrewm@0
|
504
|
andrewm@0
|
505 PeakBurst[0].process(1);
|
andrewm@0
|
506
|
andrewm@50
|
507 float convAudio = burstOut*peak[0];
|
andrewm@50
|
508 context->analogOut[n*8 + DAC_PIN5] = convAudio;
|
andrewm@0
|
509 prevFiltered[0] = filterOut[0][n*2+1];
|
andrewm@0
|
510 if(prevFiltered[0]>1)
|
andrewm@0
|
511 prevFiltered[0] = 1;
|
andrewm@0
|
512
|
andrewm@0
|
513 /* Matrix In 5
|
andrewm@0
|
514 *
|
andrewm@0
|
515 * Dissonance, via changing frequency motion of partials
|
andrewm@0
|
516 */
|
andrewm@50
|
517 float amount = (float)context->analogIn[n*8 + ADC_PIN5];
|
andrewm@50
|
518 gOscBanks[gCurrentOscBank]->freqMovement = 1.0 - amount;
|
andrewm@0
|
519
|
andrewm@0
|
520
|
andrewm@0
|
521
|
andrewm@0
|
522
|
andrewm@0
|
523 /* Matrix Out 6
|
andrewm@0
|
524 *
|
andrewm@0
|
525 * Audio In 2 peak detection and peak burst output
|
andrewm@0
|
526 */
|
andrewm@0
|
527
|
andrewm@0
|
528 filterOut[1][n*2+1] *= filterGain;
|
andrewm@0
|
529 burstOut = PeakBurst[1].getOutput();
|
andrewm@0
|
530 if( burstOut < 0.1)
|
andrewm@0
|
531 {
|
andrewm@0
|
532 if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) )
|
andrewm@0
|
533 {
|
andrewm@0
|
534 peak[1] = prevFiltered[1];
|
andrewm@0
|
535 PeakBurst[1].gate(1);
|
andrewm@0
|
536 }
|
andrewm@0
|
537 }
|
andrewm@0
|
538
|
andrewm@0
|
539 PeakBurst[1].process(1);
|
andrewm@0
|
540
|
andrewm@50
|
541 convAudio = burstOut*peak[1];
|
andrewm@50
|
542 context->analogOut[n*8 + DAC_PIN6] = convAudio;
|
andrewm@0
|
543 prevFiltered[1] = filterOut[1][n*2+1];
|
andrewm@0
|
544 if(prevFiltered[1]>1)
|
andrewm@0
|
545 prevFiltered[1] = 1;
|
andrewm@0
|
546
|
andrewm@0
|
547 /* Matrix In 6
|
andrewm@0
|
548 *
|
andrewm@0
|
549 * Sound selector
|
andrewm@0
|
550 */
|
andrewm@0
|
551 if(!gIsLoading) {
|
andrewm@0
|
552 // Use hysteresis to avoid jumping back and forth between sounds
|
andrewm@0
|
553 if(gOscBanks.size() > 1) {
|
andrewm@50
|
554 float input = context->analogIn[n*8 + ADC_PIN6];
|
andrewm@50
|
555 const float hystValue = 16000.0 / 65536.0;
|
andrewm@0
|
556
|
andrewm@50
|
557 float upHysteresisValue = ((gCurrentOscBank + 1) + hystValue) / gOscBanks.size();
|
andrewm@50
|
558 float downHysteresisValue = (gCurrentOscBank - hystValue) / gOscBanks.size();
|
andrewm@0
|
559
|
andrewm@0
|
560 if(input > upHysteresisValue || input < downHysteresisValue) {
|
andrewm@50
|
561 gNextOscBank = input * gOscBanks.size();
|
andrewm@0
|
562 if(gNextOscBank < 0)
|
andrewm@0
|
563 gNextOscBank = 0;
|
andrewm@0
|
564 if((unsigned)gNextOscBank >= gOscBanks.size())
|
andrewm@0
|
565 gNextOscBank = gOscBanks.size() - 1;
|
andrewm@0
|
566 }
|
andrewm@0
|
567 }
|
andrewm@0
|
568 }
|
andrewm@0
|
569
|
andrewm@0
|
570 /*
|
andrewm@0
|
571 * Matrix In 7
|
andrewm@0
|
572 *
|
andrewm@0
|
573 * FSR from primary touch sensor
|
andrewm@0
|
574 * Value ranges from 0-1799
|
andrewm@0
|
575 */
|
andrewm@50
|
576 gLastFSRValue = context->analogIn[n*8 + ADC_PIN7] * 1799.0;
|
andrewm@50
|
577 //gLastFSRValue = 1799 - context->analogIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
andrewm@0
|
578 //dbox_printf("%i\n",gLastFSRValue);
|
andrewm@0
|
579
|
andrewm@0
|
580 gMatrixSampleCount++;
|
andrewm@0
|
581 }
|
andrewm@0
|
582
|
andrewm@0
|
583 #endif /* DBOX_CAPE_TEST */
|
andrewm@0
|
584 }
|
andrewm@0
|
585
|
andrewm@0
|
586 // Medium-priority render function used for audio hop calculations
|
andrewm@0
|
587 void render_medium_prio()
|
andrewm@0
|
588 {
|
andrewm@0
|
589
|
andrewm@0
|
590 if(gOscillatorNeedsRender) {
|
andrewm@0
|
591 gOscillatorNeedsRender = false;
|
andrewm@0
|
592
|
andrewm@0
|
593 /* Render one frame into the write buffer */
|
andrewm@50
|
594 memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * 2 * sizeof(float)); /* assumes 2 audio channels */
|
andrewm@0
|
595
|
andrewm@0
|
596 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite,
|
andrewm@0
|
597 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
598 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
599 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
600 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
601 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
602 /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable);
|
andrewm@0
|
603
|
andrewm@50
|
604 gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * 2;
|
andrewm@0
|
605
|
andrewm@0
|
606 /* Update the pitch right before the hop
|
andrewm@0
|
607 * Total CV range +/- N_OCT octaves
|
andrewm@0
|
608 */
|
andrewm@0
|
609 float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2;
|
andrewm@0
|
610 //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch);
|
andrewm@0
|
611 gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch);
|
andrewm@0
|
612
|
andrewm@0
|
613 #ifdef FIXME_LATER // This doesn't work very well yet
|
andrewm@0
|
614 gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount;
|
andrewm@0
|
615 float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler();
|
andrewm@0
|
616 for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++)
|
andrewm@0
|
617 {
|
andrewm@0
|
618 // touch pos is linear but freqs are log
|
andrewm@0
|
619 gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler;
|
andrewm@0
|
620 gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i];
|
andrewm@0
|
621 if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler)
|
andrewm@0
|
622 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler );
|
andrewm@0
|
623 else
|
andrewm@0
|
624 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1;
|
andrewm@0
|
625 }
|
andrewm@0
|
626 #endif
|
andrewm@0
|
627
|
andrewm@0
|
628 RTIME ticks = rt_timer_read();
|
andrewm@0
|
629 SRTIME ns = rt_timer_tsc2ns(ticks);
|
andrewm@0
|
630 SRTIME delta = ns-prevChangeNs;
|
andrewm@0
|
631
|
andrewm@0
|
632 // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard]
|
andrewm@0
|
633 if(gNextOscBank != gCurrentOscBank && delta>100000000) {
|
andrewm@0
|
634
|
andrewm@0
|
635 /*printf("ticks %llu\n", (unsigned long long)ticks);
|
andrewm@0
|
636 printf("ns %llu\n", (unsigned long long)ns);
|
andrewm@0
|
637 printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs);
|
andrewm@0
|
638 printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/
|
andrewm@0
|
639
|
andrewm@0
|
640 prevChangeNs = ns;
|
andrewm@0
|
641 dbox_printf("Changing to bank %d...\n", gNextOscBank);
|
andrewm@0
|
642 if(gOscBanks[gCurrentOscBank]->state==bank_playing){
|
andrewm@0
|
643 gOscBanks[gCurrentOscBank]->stop();
|
andrewm@0
|
644 }
|
andrewm@0
|
645
|
andrewm@0
|
646 gCurrentOscBank = gNextOscBank;
|
andrewm@0
|
647 gOscBanks[gCurrentOscBank]->hopNumTh = 0;
|
andrewm@0
|
648 }
|
andrewm@0
|
649 else {
|
andrewm@0
|
650 /* Advance to the next oscillator frame */
|
andrewm@0
|
651 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
652 }
|
andrewm@0
|
653 }
|
andrewm@0
|
654 }
|
andrewm@0
|
655
|
andrewm@0
|
656 // Lower-priority render function which performs matrix calculations
|
andrewm@0
|
657 // State should be transferred in via global variables
|
andrewm@0
|
658 void render_low_prio()
|
andrewm@0
|
659 {
|
andrewm@0
|
660 gPRU->setGPIOTestPin();
|
andrewm@0
|
661 if(gDynamicWavetableNeedsRender) {
|
andrewm@0
|
662 // Find amplitude of wavetable
|
andrewm@0
|
663 float meanAmplitude = 0;
|
andrewm@0
|
664 float sineMix;
|
andrewm@0
|
665
|
andrewm@0
|
666 for(int i = 0; i < gFeedbackOscillatorTableLength; i++) {
|
andrewm@0
|
667 //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
668 meanAmplitude += fabs(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
669 }
|
andrewm@0
|
670 meanAmplitude /= (float)gFeedbackOscillatorTableLength;
|
andrewm@0
|
671
|
andrewm@0
|
672 if(meanAmplitude > 0.35)
|
andrewm@0
|
673 sineMix = 0;
|
andrewm@0
|
674 else
|
andrewm@0
|
675 sineMix = (.35 - meanAmplitude) / .35;
|
andrewm@0
|
676
|
andrewm@0
|
677 //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix);
|
andrewm@0
|
678
|
andrewm@0
|
679 // Copy to main wavetable
|
andrewm@0
|
680 wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength,
|
andrewm@0
|
681 gFeedbackOscillatorTable, gDynamicWavetable,
|
andrewm@0
|
682 gOscBanks[gCurrentOscBank]->lookupTable, sineMix);
|
andrewm@0
|
683 }
|
andrewm@0
|
684
|
andrewm@50
|
685 if(gLoopPointMin >= 60000.0/65536.0 && gLoopPointMax >= 60000.0/65536.0) {
|
andrewm@0
|
686 // KLUDGE!
|
andrewm@0
|
687 if(gCurrentOscBank == 0)
|
andrewm@0
|
688 gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1);
|
andrewm@0
|
689 else
|
andrewm@0
|
690 gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1);
|
andrewm@0
|
691 }
|
andrewm@0
|
692 else {
|
andrewm@50
|
693 float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop();
|
andrewm@50
|
694 float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop();
|
andrewm@0
|
695
|
andrewm@0
|
696 int intLoopPointMin = normLoopPointMin;
|
andrewm@0
|
697 if(intLoopPointMin < 1)
|
andrewm@0
|
698 intLoopPointMin = 1;
|
andrewm@0
|
699 int intLoopPointMax = normLoopPointMax;
|
andrewm@0
|
700 if(intLoopPointMax <= intLoopPointMin)
|
andrewm@0
|
701 intLoopPointMax = intLoopPointMin + 1;
|
andrewm@0
|
702 if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1)
|
andrewm@0
|
703 intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1;
|
andrewm@0
|
704
|
andrewm@0
|
705 //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
706
|
andrewm@0
|
707 /* WORKS, jsut need to fix the glitch when jumps!
|
andrewm@0
|
708 * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop();
|
andrewm@0
|
709 if(currentHop < intLoopPointMin -1 )
|
andrewm@0
|
710 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1);
|
andrewm@0
|
711 else if(currentHop > intLoopPointMax + 1)
|
andrewm@0
|
712 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/
|
andrewm@0
|
713 gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
714 }
|
andrewm@0
|
715
|
andrewm@0
|
716 if(gIsLoading)
|
andrewm@0
|
717 gStatusLED.blink(25, 75); // Blink quickly until load finished
|
andrewm@0
|
718 else
|
andrewm@0
|
719 gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed());
|
andrewm@0
|
720 gPRU->clearGPIOTestPin();
|
andrewm@0
|
721
|
andrewm@0
|
722 // static int counter = 32;
|
andrewm@0
|
723 // if(--counter == 0) {
|
andrewm@0
|
724 // for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
725 // dbox_printf("%d ", gLoopPointsInputBuffer[i]);
|
andrewm@0
|
726 // if(i % 32 == 31)
|
andrewm@0
|
727 // dbox_printf("\n");
|
andrewm@0
|
728 // }
|
andrewm@0
|
729 // dbox_printf("\n\n");
|
andrewm@0
|
730 // counter = 32;
|
andrewm@0
|
731 // }
|
andrewm@0
|
732
|
andrewm@0
|
733 //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax);
|
andrewm@0
|
734 }
|
andrewm@0
|
735
|
andrewm@0
|
736 // Clean up at the end of render
|
giuliomoro@301
|
737 void cleanup(BelaContext *context, void *userData)
|
andrewm@0
|
738 {
|
andrewm@0
|
739 free(gOscillatorBuffer1);
|
andrewm@0
|
740 free(gOscillatorBuffer2);
|
andrewm@0
|
741 free(gDynamicWavetable);
|
andrewm@0
|
742 }
|
andrewm@0
|
743
|
andrewm@0
|
744 // Interpolate one wavetable into another. The output size
|
andrewm@0
|
745 // does not include the guard point at the end which will be identical
|
andrewm@0
|
746 // to the first point
|
andrewm@0
|
747 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
748 float *tableIn, float *tableOut,
|
andrewm@0
|
749 float *sineTable, float sineMix)
|
andrewm@0
|
750 {
|
andrewm@0
|
751 float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut;
|
andrewm@0
|
752
|
andrewm@0
|
753 for(int k = 0; k < numSamplesOut; k++) {
|
andrewm@0
|
754 float fractionalIndex = (float) k * fractionalScaler;
|
andrewm@0
|
755 //int sB = (int)floorf(fractionalIndex);
|
andrewm@0
|
756 int sB = (int)floor(fractionalIndex);
|
andrewm@0
|
757 int sA = sB + 1;
|
andrewm@0
|
758 if(sA >= numSamplesIn)
|
andrewm@0
|
759 sA = 0;
|
andrewm@0
|
760 float fraction = fractionalIndex - sB;
|
andrewm@0
|
761 tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB];
|
andrewm@0
|
762 tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k];
|
andrewm@0
|
763 }
|
andrewm@0
|
764
|
andrewm@0
|
765 tableOut[numSamplesOut] = tableOut[0];
|
andrewm@0
|
766 }
|
andrewm@0
|
767
|
andrewm@0
|
768 // Create a hysteresis oscillator with a matrix input and output
|
andrewm@50
|
769 inline float hysteresis_oscillator(float input, float risingThreshold, float fallingThreshold, bool *rising)
|
andrewm@0
|
770 {
|
andrewm@50
|
771 float value;
|
andrewm@0
|
772
|
andrewm@0
|
773 if(*rising) {
|
andrewm@0
|
774 if(input > risingThreshold) {
|
andrewm@0
|
775 *rising = false;
|
andrewm@0
|
776 value = 0;
|
andrewm@0
|
777 }
|
andrewm@0
|
778 else
|
andrewm@50
|
779 value = 1.0;
|
andrewm@0
|
780 }
|
andrewm@0
|
781 else {
|
andrewm@0
|
782 if(input < fallingThreshold) {
|
andrewm@0
|
783 *rising = true;
|
andrewm@50
|
784 value = 1.0;
|
andrewm@0
|
785 }
|
andrewm@0
|
786 else
|
andrewm@0
|
787 value = 0;
|
andrewm@0
|
788 }
|
andrewm@0
|
789
|
andrewm@0
|
790 return value;
|
andrewm@0
|
791 }
|
andrewm@0
|
792
|
andrewm@0
|
793 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
794 // Test the functionality of the D-Box cape by checking each input and output
|
andrewm@0
|
795 // Loopback cable from ADC to DAC needed
|
andrewm@0
|
796 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
797 uint16_t *matrixIn, uint16_t *matrixOut)
|
andrewm@0
|
798 {
|
andrewm@0
|
799 static float phase = 0.0;
|
andrewm@0
|
800 static int sampleCounter = 0;
|
andrewm@0
|
801 static int invertChannel = 0;
|
andrewm@0
|
802
|
andrewm@0
|
803 // Play a sine wave on the audio output
|
andrewm@0
|
804 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
805 audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase);
|
andrewm@0
|
806 phase += 2.0 * M_PI * 440.0 / 44100.0;
|
andrewm@0
|
807 if(phase >= 2.0 * M_PI)
|
andrewm@0
|
808 phase -= 2.0 * M_PI;
|
andrewm@0
|
809 }
|
andrewm@0
|
810
|
andrewm@0
|
811 for(int n = 0; n < numMatrixFrames; n++) {
|
andrewm@0
|
812 // Change outputs every 512 samples
|
andrewm@0
|
813 if(sampleCounter < 512) {
|
andrewm@0
|
814 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
815 if(k == invertChannel)
|
andrewm@0
|
816 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
817 else
|
andrewm@0
|
818 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
819 }
|
andrewm@0
|
820 }
|
andrewm@0
|
821 else {
|
andrewm@0
|
822 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
823 if(k == invertChannel)
|
andrewm@0
|
824 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
825 else
|
andrewm@0
|
826 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
827 }
|
andrewm@0
|
828 }
|
andrewm@0
|
829
|
andrewm@0
|
830 // Read after 256 samples: input should be low
|
andrewm@0
|
831 if(sampleCounter == 256) {
|
andrewm@0
|
832 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
833 if(k == invertChannel) {
|
andrewm@0
|
834 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
835 dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
836 }
|
andrewm@0
|
837 }
|
andrewm@0
|
838 else {
|
andrewm@0
|
839 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
840 dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
841 }
|
andrewm@0
|
842 }
|
andrewm@0
|
843 }
|
andrewm@0
|
844 }
|
andrewm@0
|
845 else if(sampleCounter == 768) {
|
andrewm@0
|
846 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
847 if(k == invertChannel) {
|
andrewm@0
|
848 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
849 dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
850 }
|
andrewm@0
|
851 }
|
andrewm@0
|
852 else {
|
andrewm@0
|
853 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
854 dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
855 }
|
andrewm@0
|
856 }
|
andrewm@0
|
857 }
|
andrewm@0
|
858 }
|
andrewm@0
|
859
|
andrewm@0
|
860 if(++sampleCounter >= 1024) {
|
andrewm@0
|
861 sampleCounter = 0;
|
andrewm@0
|
862 invertChannel++;
|
andrewm@0
|
863 if(invertChannel >= 8)
|
andrewm@0
|
864 invertChannel = 0;
|
andrewm@0
|
865 }
|
andrewm@0
|
866 }
|
andrewm@0
|
867 }
|
andrewm@0
|
868 #endif
|
andrewm@0
|
869
|
andrewm@0
|
870
|